Generalization of experimental data on heat transfer and critical heat fluxes on microstructured surfaces during boiling of various liquids


Аuthors

Aksianov R. A.*, Kokhanova Y. S.**, Kuimov E. S.***, Ley I. A.****, Popov I. A.*****

Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia

*e-mail: raaksyanov@kai.ru
**e-mail: yulkoh@yandex.ru,
***e-mail: egor1997-08@mail.ru
****e-mail: regina.ulyanova.ley@gmail.com
*****e-mail: popov-igor-alex@yandex.ru

Abstract

In the work, on available in the literature sources of experimental data on heat transfer and critical heat flux at boiling of various liquids on the microstructured surfaces made by the deforming cutting method, recommendations for prediction of heat transfer coefficients and critical heat fluxes are received. Microstructured surfaces allow to intensify the heat transfer is 1.1 to 6 times. Due to the variable wettability of microstructured surfaces elements, critical heat fluxes increase before 4 times. The proposed criteria equations allow predicting heat transfer coefficients with an error of 30%, and critical heat fluxes with an error of ±(30...35)%. In order to improve the accuracy of forecasting, the possibility of using an artificial neural network model for generalizing heat transfer coefficients is shown. Forecasting using an artificial neural network model allows you to determine the heat transfer coefficients with an error of ±20%.Theequations are of interest for designing cooling systems for microelectronic devices, heat and mass transfer devices, boiling zones of heat pipes and thermosyphons, etc.

Keywords:

boiling, heat transfer, critical heat fluxes, microstructured surfaces, cooling systems.

References

  1. Dedov A.V. review of modern methods for enhancing nucleate boiling heat transfer. Thermal Engineering, 2019, vol. 66, no. 12, pp. 881–915.

  2. Popov I.A., Shchelchkov A.V., Gortyshov Yu.F., Zubkov N.N. Heat transfer enhancement and critical heat fluxes in boiling of microfinned surfaces. High Temperature, 2017, vol. 55, no. 4, pp.524—534.

  3. Zoubkov N.N. Orebrenie trub teploobmennykh apparatov podrezaniem i otgibkoj poverkhnostnykh sloev [Finning of heat exchanger tubes by cutting and bending the surface layers]. Novosti teplosnabzheniya — Heat supply news, 2005, no. 4, pp. 51–53. In Russ.

  4. Zoubkov N.N., Trofimovich A.S., Ovchinnikov A.I., Tsfasman G.Yu., Gorodnikov V.V. Poluchenie shtyr’kovykh struktur dlya kipeniya azota [Making of pin fin structures for boiling of nitrogen]. Vestnik MGTU im. N.EH. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow state technical university. Series mechanical engineering, 2013, no. 1, pp. 100–109. In Russ.

  5. Zoubkov N.N. Poluchenie podpoverkhnostnykh polostej deformiruyushhim rezaniem dlya intensifikatsii puzyr’kovogo kipeniya [Obtaining of subsurface cavities by deforming cutting to intensify bubble boiling]. Vestnik mashinostroeniya — Mechanical Engineering Bulletin, 2014, no. 11, pp. 75–79. In Russ.

  6. Gortyshov Yu.F., Popov I.A., Zoubkov N.N., Kaskov S.I., Shchelchkov A.V. Kipenie vody na mikrostrukturirovannykh poverkhnostyakh [Pool boiling of water on microstructured surfaces]. Trudy Аkademehnergo — Academenergo Proceedings, 2012, no. 1, pp. 14–31. In Russ.

  7. Popov I.A., Shchelchkov A.V., Zubkov N.N., Kaskov S.I. Heat transfer during the boiling of liquid on microstructured surfaces. Part 1: Heat transfer during the boiling of water. Thermal Engineering, 2013, vol. 60, no. 3, pp. 157–165.

  8. Kuzma-Kichta Yu.A., Lavrikov A.V. Boiling heat transfer enhancement on micro- and nanoscales. Proceedings of 2018 International Theoretical and Practical Conference on Alternative and Smart Energy (TPCASE 2018), 2018, pp. 159–164.

  9. Shustov M.V., Kuzma-Kichta Y.A., Lavrikov A.V. Nanoparticle Coating of a microchannel surface is an effective method for increasing the critical heat flux. Thermal Engineering, 2017, vol. 64, no. 4, pp. 301–306.

  10. Aksyanov R.A., Kokhanova Yu.S. Vliyanie parametrov sherokhovatosti i smachivaemosti mikrostrukturirovannykh poverkhnostej na teplootdachu i kriticheskie teplovye potoki [Influence of roughness and wettability parameters of microstructured surfaces on heat transfer and critical heat flows]. Sbornik dokladov Mezhdunarodnoj molodezhnoj nauchnoj konferentsii «XXIV TUPOLEVSKIE CHTENIYA (shkola molodykh uchenykh)» — Proceedings of XXIV Tupolev readings (school of young scientists), Kazan. 2019, vol. 2, pp. 160–166. In Russ.

  11. Surtaev A.S., Serdyukov V.S., Pavlenko A.N., Liu M., Tumanov V.V., Selishchev D.S., Kozlov D.V. Vliyanie svojstv smachivaniya na mikrokharakteristiki i teploobmen pri kipenii zhidkosti [Influence of wetting properties on microcharacteristics and heat exchange during liquid boiling]. Trudy sed’moj rossijskoj natsional’noj konferentsii po teploobmenu [Proceedings of the Seventh Russian National Conference on Heat Exchange]. Moscow, 2018, vol. 2, pp. 410–413. In Russ.

  12. Serdyukov V.S., Surtaev A.S., Pavlenko A.N., Chernyavskiy A.N. Study on local heat transfer in the vicinity of the contact line under vapor bubbles at pool boiling. High Temperature, 2018, vol. 56, no. 4, pp. 546–552.

  13. Marchuk I.V., Cheverda V.V., Kabov O.A., Strizhak P.A. Determination of surface tension and contact angle by the axisymmetric bubble and droplet shape analysis. Thermophysics and Aeromechanics, 2015, vol. 22, no. 3, pp. 297–303.

  14. Zaitsev D.V., Kirichenko D.P., Kabov O.A. The effect of substrate wettability on the breakdown of a locally heated fluid film. Technical Physics Letters,. 2015,vol. 41, no. 6, pp. 551–553.

  15. Sukomel L.A., Yagov V.V. Vozmozhnosti povysheniya kriticheskikh teplovykh potokov pri kipenii na poverkhnostyakh s poristymi pokrytiyami (obzor) [The possibilities of increasing critical heat fluxes for boiling on surfaces with porous coatings (a review)]. Vestnik Moskovskogo ehnergeticheskogo instituta — Bulletin of the Moscow power Engineering Institute, 2017, no. 4, pp. 55–67. In Russ. DOI: 10.24160/1993-6982-2017-4-55-67

  16. Zubkov N.N., Bityutskaya Yu.L. Vliyanie parametrov teploobmennykh shtyr’kovykh struktur na ikh ehkspluatatsionnye kharakteristiki [Effect of heat-exchange pin-fin structure parameters on its performance characteristics]. Vestnik MGTU im. N.Eh. Baumana. Ser. Mashinostroenie — Herald of the Bauman Moscow state technical university. Series mechanical engineering, 2017, no. 2 (113), pp. 108–120. In Russ. DOI: 10.18698/0236-3941-2017-2-108-120

  17. Abrosimov A.I., Sysoev V.K., Verlan A.A., Zoubkov N.N., Bulkin Yu.N. Prodol’nye kapillyarnye kanaly dlya teplovykh trub [Longitudinal Capillary Channels for Heat Pipes]. Prikladnaya Fizika, 2010, no. 1, pp. 123–125. In Russ.

  18. Volodin O., Pecherkin N., Pavlenko A., Zubkov N. Surface microstructures for boiling and evaporation enhancement in falling films of low-viscosity fluids. International Journal of Heat and Mass Transfer, 2020, vol. 155, p. 119722.

  19. Labuntsov D.A. Fizicheskie osnovy ehnergetiki. Izbrannye trudy po teploobmenu, gidrodinamike, termodinamike [Physical Bases Of Power Engineering. Selected Works On Heat Exchange, Hydrodynamics, Thermodynamics]. Moscow: Publishing House of Moscow Power Engineering Institute, 2000. 388 p. In Russ.

  20. Kutateladze S.S. Osnovy teorii teploobmena [Fundamentals of the Theory of Heat Transfer]. Novosibirsk: Nauka, 1970. 660 p. In Russ.

  21. Tolubinsky V.I. Teploobmen pri kipenii v usloviyakh svobodnoj konvektsii [Heat exchange at boiling under free convection]. Trudy in-ta teploehnergetiki — Proc. Institute of Power Engineering, 1950, no. 2, pp. 19–29. In Russ.

  22. Borishansky V.M. Shleifer V A. Obobshhennaya formula dlya rascheta teplootdachi pri puzyr’kovom kipenii razlichnykh zhidkostej [Generalized equation for bubble boiling heat transfer of various fluids]. Teplo- i massoperenos pri fazovykh prevrashheniyakh: materialy IV Vsesoyuz. konf. po teploobmenu i gidrodinamike pri dvizhenii dvukhfaz. potoka v ehlementakh ehnerget. mashin i apparatov. In-t teplo- i massoobmena АN BSSR. Minsk, 1974 [Heat and mass exchange at phase transition: Materials IV Soviet Union Conf. on heat exchange and hydrodynamics in two-phase motion in the element of power machines and equipments. Institute of heat and mass exchange, Academy of Science of Belarus Republic — Minsk], 1974, part 1, pp. 202–210. In Russ.

  23. Labuntsov D.A., Yagov V.V. Mekhanika dvukhfaznykh sistem [Mechanics of Two-Phase Systems]. Moscow: Publishing house of Moscow Power Engineering Institute, 2000. 374 p. In Russ.

  24. Popov I.A., Shchelchkov A.V., Zubkov N.N., Kas`kov S.I. Heat transfer during the boiling of liquid on microstructured surfaces. Part 2: Visualization of boiling and critical heat fluxes. Thermal Engineering, 2013, vol. 60, no.4, pp. 285–294.

  25. Shchelchkov A.V., Popov I.A., Zubkov N.N. Boiling of a liquid on microstructured surfaces under free-convection conditions. Journal of Engineering Physics and Thermophysics, 2016, vol. 89, no. 5, pp. 1152–1160. DOI: 10.1007/s10891-016-1478-5

  26. Passos J.C., Reinaldo R.F. Analysis of pool boiling within smooth and grooved tubes. Experimental Thermal and Fluid Science, 2000, vol. 22, pp. 35–44 https://doi.org/10.1016/S0894-1777(00)00008-X

  27. Popov I.A., Shchelchkov A.V., Zubkov N.N., Lei R.A., Gortyshov Y.F. Boiling heat transfer of different liquids on microstructured surfaces. Russian Aeronautics, 2014, vol. 57, no. 4, pp. 395–401. https://doi.org/10.3103/S1068799814040138

  28. Popov I.A., Shchelchkov A.V. Boiling of various liquids on microstructurized surfaces. Journal of Engineering Physics and Thermophysics, 2014, vol. 87, no. 6, pp. 1420–1432. https://doi.org/10.1007/s10891-014-1146-6

  29. Kaniowski R., Pastuszko R., Nowakowski L. Effect of geometrical parameters of open microchannel surfaces on pool boiling heat transfer. EPJ Web of Conferences, 2017, vol. 143, p.02049. DOI: 10.1051/epjconf/201714302049

  30. Kedziersci M.A. Calorimetric and Visual Measurements of R123 Pool Boiling on Four Enhanced Surfaces. NIST Interagency/Internal Report (NISTIR) 5732, 1995. 59 p. https://doi.org/10.6028/NIST.IR.5732

  31. Kim Nae-H., Kim J.-W., Kim T.-H. Effect of pore size on the nucleate pool boiling of structured enhanced tubes. J. of Thermal Science, 2000, vol. 9, no.3, pp. 230— 235

  32. Ravigururajan T.S., Bergles A.E. Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes. Experimental Thermal and Fluid Science, 1996, vol. 13, no. 1, pp. 55–70. https://doi.org/10.1016/0894-1777(96)00014-3

  33. Webb R.L. Kim Nae-H. Principles of Enhanced Heat Transfer. cRC Press. 818 p.

  34. Poniewsky M.P., Thome J.R. Nucleate Boiling on Micro-Structure Surfaces. Heat Transfer Research. E-book, 2008. 376 p.

  35. Gogonin I.I. Teploobmen pri puzyr’kovom kipenii [Heat Transfer at Bubble Boiling]. Novosibirsk: Publishing House of the Russian Academy of Sciences, 2018. 225 p. In Russ.

  36. MacKay D.J.C. Bayesian interpolation. Neural computation, 1992, vol. 4, no. 3, pp. 415–447. DOI: 10.1162/neco.1992.4.3.415

  37. Foresee F.D., Hagan M.T. Gauss-Newton approximation to Bayesian learning. Proceedings of International Conference on Neural Networks (ICNN’97), Houston, TX, USA, 1997, pp. 1930-1935 vol.3. DOI: 10.1109/ICNN.1997.614194.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI