Manufacturing and testing of the experimental models of transmit-receive modules of an active phased antenna array, made with flat pate heat pipes


Аuthors

1*, 2**, Solyaev Y. O.3***

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. PJSC Radiofizika, Geroev Panfilovtsev street, 10, Moscow, 125480, Russia
3. Institute of Applied Mechanics of Russian Academy of Science, IPRIM RAS, 7, Leningradskiy Prospekt, Moscow, 125040, Russia

*e-mail: p.o.polyakov@yandex.ru
**e-mail: radiofizika01@mail.ru
***e-mail: yos@iam.ras.ru

Abstract

Modern high-power and high-frequency radar systems require the development of new com- pact cooling systems with improved operating parameters. This paper presents a manufacturing technique and test results for the thermal models of transmit-receive modules (TPM) of an ac- tive phased antenna array in which the two-stage cooling system is realized. Two variants of X-band modules with built-in flat plate heat pipes used as heat-spreading elements and located outside the casing of TPM or inside under the radio-electronic cell are considered. The tests were carried out under the conditions of usage of the external liquid-based cooling system at various angles of inclination of thermal models relative to the direction of gravity. Based on the test results, the change in the heating temperature of the active electronic elements of the module and of the surface of heat pipes was determined. Tests have shown the possibility of using of the flat plate heat pipes with a thickness of 2.2 mm for cooling a TPM with a total heat release power of 80 W even under the action of gravity. Maximum temperature of the electronic elements was not higher than allowable 75°C and 80°C for the cases of horizontal and inclined orientation of the models, respectively. To determine the efficiency of the heat pipes, a comparison was made, in which instead of heat pipes the solid copper plates of the same thickness and in-plane size were installed. Improvement of the cooling performance of the system with mounted heat pipes is shown and validated experimentally.


References

  1. Krahin O.I., Radchenko V.P., Ventsenostsev D.L. Metody sozdaniya sistemy otvoda tepla teplonagruzhennykh chastej FАR [Methods of creation of heat removal system of phased array antenna heatloaded parts]. Radiotekhnika – Radioengineering, 2011, no. 10, pp. 88–94. In Russ.

  2. Dokuchaev A.E., Zinchuk A.A. Eksperimental'noe issledovanie primeneniya teplovoj truby v gazogeneratore [Experimental study of the use of a heat pipe in a gas generator]. Vestnik Moskovskogo aviatsionnogo institute – Aerospace MAI Journal, 2011, vol. 18, no. 3, pp. 89–96. In Russ.

  3. Amelin A.N., Brunov G.A., Ivanov N.N., Kovalev V.S., Moisheev A.A., Pichkhadze K.M., Polishchuk G.M., Fedorov O.S., Chetverik V.N. Kosmicheskij apparat i sektsiya antennoj fazirovannoj reshetki [Spacecraft and phased array antenna section]. Patent RU, no. 2333139, 2006, 21 p.

  4. Parlak M., McGlen R.J. Cooling of high power active phased array antenna using axially grooved heat pipe for a space application. 7th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, 2015, pp. 743–748. DOI: 10.1109/RAST.2015.7208439.

  5. Krakhin O.I., Radchenko V.P. Problemy teplootvoda priyomo-peredayushhikh modulej i АFАR s vysokim urovnem moshhnosti [Problems of heat dissipation of transmit-receive modules and AFAR with a high power level]. Proc. of. XVII International conference. Magnetism, long and short-range spin-spin interaction, Moscow, MPEI, 2009, pp. 172–177. In Russ.

  6. Döring B.J. Cooling system for a Ka band transmit antenna array. Deutsches Zentrum fur Luft- und Raumfahrt e.V.: Final Report IB554-06/02, 2005, 82 p.

  7. Greda L.A., Dreher A. Tx-terminal phased array for satellite communication at Ka-band. 2007 European Microwave Conference, Munich, 2007, pp. 266–269, DOI: 10.1109/ EUMC.2007.4405177.

  8. Li Y., He J., He H., Yan Y., Zeng Z., Li B. Investigation of ultra-thin flattened heat pipes with sintered wick structure. Applied Thermal Engineering, 2015, vol.  86, pp. 106–118. https://doi.org/10.1016/j.applthermaleng.2015. 04.027

  9. Hack N., Unz S., Beckmann M. Ceramic heat pipes for high temperature application. Energy Procedia, 2017, vol.  120, pp. 140–148. https://doi.org/10.1016/j.egypro.2017.07.147

  10. Maydanik Y. Loop heat pipes. Applied Thermal Engineering, 2005, vol. 25, no. 5–6, pp. 635–657. https://doi.org/ 10.1016/j.applthermaleng.2004.07.010

  11. Reay D., Kew P. Heat pipes – theory, design and applications. Oxford OX2 8DP, USA: Butterworth-Heinemann, 2006. 397 p.

  12. Khairnasov S., Naumova A. Heat pipes application in electronics thermal control systems. Frontiers in Heat Pipes, 2015, vol. 6, pp. 1‒ 14. http://dx.doi.org/10.5098/fhp.6.6.

  13. Military embedded systems. http://mil-embedded.com/ eletter-products/break-thermal-barriers-in-radar-and-ew-system-with-thermacore-thermal-management-technologies/ (accessed 17.04.2019).

  14. Zhang Wenxing, Wu Qiang, Zhao Shuwei. Thermal design of T/R modules in airborne phased array antenna. Proceedings of the 2nd Joint International Information Technology, Mechanical and Electronic Engineering Conference, 2017, pp. 415–418. DOI: 10.2991/jimec-17.2017.91

  15. Sinani A.I., Moseichuk G.F., Knyazev V.M., Ageev P.A., Narkevich A.L., Vasin A.M., Sedov V.V., Lomovskaya T.A. Samoletnaya antennaya reshetka [Aircraft antenna array]. Patent RU 2453955, 2012, 7 p.

  16. Sinani A.I., Moseichuk G.F., Lomovskaya T.A., Age- ev P.A., Vasin A.M., Sedov V.V., Narkevich A.L., Polyakov V.B., Davidenko A.N. Samoletnaya antennaya reshetka [Aircraft antenna array]. Patent RU 2439758, 2012, 6 p.

  17. Pavlov D.V., Petrov D.S. Ispol'zovanie metoda trekhstadijnoj dekompozitsii dlya modelirovaniya sistemy termoregulirovaniya kosmicheskogo apparata [Using the three-stage decomposition method for modeling the thermal control system of a spacecraft]. Vestnik Moskovskogo aviatsionnogo instituta – Aerospace MAI Journal, 2015, vol. 22, no. 2, pp. 42–54. In Russ.

  18. Nikolaenko Y.E., Baranyuk A.V., Reva S.A., Pis′mennyi E.N., Dubrovka F.F., Rohachov V.A. Improving air cooling efficiency of transmit/receive modules through using heat pipes. Thermal Science and Engineering Progress, 2019, vol. 14, p. 100418. DOI:10.1016/j.tsep.2019. 100418

  19. Bratchikov A.N., Gordeichuk D.V., Orlov A.P. Opticheskie metody upravleniya fazirovannymi antennymi reshetkami [Optical control methods for phased antenna arrays]. Vestnik Moskovskogo aviatsionnogo instituta – Aerospace MAI Journal, 2001, vol. 8, no. 1, pp. 74–82. In Russ.

  20. Malakhov R.Yu. Usiliteli moshhnosti tsifrovykh antennykh reshetok bortovykh radioehlektronnykh sistem [Power amplifiers for digital antenna arrays of onboard radio electronic systems]. Vestnik Moskovskogo aviatsionnogo instituta – Aerospace MAI Journal, 2014, vol. 21, no. 1, pp. 135–142. In Russ.

  21. Rabinsky L.N., Tokmakov D.I., Solyaev Yu.O. Izgotovlenie korpusa priemo-peredayushhego modulya АFАR so vstroennymi kanalami okhlazhdeniya s ispol'zovaniem tekhnologii SLM [Manufacturing of the housing of the AFAA transceiver module with built-in cooling channels using SLM technology]. STIN, 2019, no. 4, pp. 11–14. In Russ.


mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI