The possibility of using powerful AC plasmatrons Zvezda for gasification of water-coal suspensions


Аuthors

1, Rebrov S. G.1*, Golikov A. N.1**, A. 1, A. 2, A. 3

1. State Scientific Center of the Russian Federation “Keldysh Research Center”, Moscow, Russia
2. LLC "Amalthea-Service", Sumskoi proezd, 8-2-95, Moscow, 117208, Russia
3. LLC "Technopodzemenergo", Kirova street, 1/147, Lyubertsy, Moscow region, 140002, Russia

*e-mail: rebrov_sergey@mail.ru
**e-mail: andgolikov@mail.ru

Abstract

Experiments were carried out that demonstrated the possibility of effective gasification of the water-coal suspension when it is directly supplied to the chamber of a powerful AC plasmatron Zvezda the arc channels of which operate on gas. The chamber acts as a plasma-chemical reactor. A great advantage of the use of Zvezda-type plasmatrons is the possibility of achieving the high rates of the gasification process and the possibility of operating in a wide range of pressures and temperatures. The parametric calculations of the equilibrium composition of gasification products revealed a number of results characterizing the energy efficiency and environmental safety of the water-coal suspension gasification process. It turned out that in the case of air operation of plasmatron, conversion of carbon-containing substances in it allows almost complete removal of such harmful component as nitrogen oxide from exhaust. Optimization of carbon content in water-coal suspension allows to obtain such gasification modes in which there is practically no carbon in condensed phase at the outlet and carbon dioxide content is minimized. The energy efficiency of the gasification process, which is characterized by the ratio of the chemical caloric content of the output synthesis gas to the energy invested in the arc discharges of the plasmatron, for the considered gasification modes exceeds 1.7. The calorie content of the output mixture for the air operation of the plasmatron is of the order of 7 MJ/kg, but it can be increased to a value greater than 12 MJ/kg when carbon dioxide is used as the working medium of the plasmatron.

References

  1. Morozov A.G. O rezul'tatakh prakticheskogo ispol'zovaniya vodougol'nogo topliva v Irlandii [On the results of practical use of water-coal fuel in Ireland]. Ekologicheskij vestnik Rossii – Enviromental bulletin of Russia, 2018, no. 3, pp. 23–26. In Russ.

  2. Ovchinnikov Yu.V., Boyko E.E., Serant F.A. Problemy szhiganiya vodougol'nykh topliv i predlozheniya po razrabotke tekhnologii szhiganiya [The problem of burning coal-water fuel and proposale for the development combustion technology]. Doklady АN VSH RF – Reports of the Academy of Sciences of the Higher School of the Russian Federation, 2015, no. 1(26), pp. 85–93. DOI: 10.17212/1727-2769-2015-1-85-93

  3. Serba E.O. Sozdanie i issledovanie ehlektrodugovogo trekhfaznogo parovodyanogo plazmotrona peremennogo toka. Diss. cand. tech. nauk [Creation and study of electric arc three-phase AC steam-water plasmatron. Cand. eng. sci. dis]. St. Petersburg, 2013. 138 p.

  4. Radko S.I. Razrabotka i issledovanie tekhnologicheskogo oborudovaniya dlya pererabotki tekhnogennykh otkhodov s ispol'zovaniem parovodyanogo plazmotrona. Diss. cand. tech. nauk [Development and research of technological equipment for processing of man-made wastes using steamwater plasmatron. Cand. eng. sci. dis.]. Novosibirsk, 2014. 124 p.

  5. Danilenko A.A. Eksperimental'nye i teoreticheskie issledovaniya protsessov plazmennoj gazifikatsii uglerodsoderzhashhikh tekhnogennykh otkhodov. Diss. cand. tech. nauk [Experimental and theoretical studies of plasma gasification processes of carbon-containing man-made wastes. Cand. eng. sci. dis]. Novosibirsk, 2012. 204 p.

  6. Svirchuk Y.S., Golikov A.N. Three-phase Zvezda-type plasmatrons. IEEE Transaction on Plasma Science, 2016, vol. 44, no. 12, pp. 3042–3047. DOI: 10.1109/TPS.2016.2571746

  7. Golikov A.N., Zaykin N.S., Svirchuk Yu.S. Three-phase arc plasmatron and way of its start. Patent RF No. 2577332, 2016.

  8. Голиков А.Н., Кочетков Ю.М., Свирчук Ю.С., Федотов В.Б. Электродуговые плазмотроны Центра Келдыша // Двигатель. 2005. № 1(37). С. 50.

  9. Свирчук Ю.С., Голиков А.Н., Журавлев П.Д., Федотов В.Б. Промышленные трехфазные электродуговые плазмотроны типа «Звезда». Конверсия в машиностроении. 2002. № 5. С. 71‒74.

  10. Koroteev A.S., Mironov V. M., Svirchuk Yu.S. Plazmotrony: konstruktsii, kharakteristiki, raschet [Plasmotrons: designs, characteristics, calculation]. Moscow: Mashinostroenie, 1993. 296 p. In Russ.

  11. Trusov B.G. Programmnaya sistema TERRA dlya modelirovaniya fazovykh i khimicheskikh ravnovesij [TERRA software system for phase modeling and chemical equilibrium]. Proc. of the XIV International Convention on Chemical and Thermodynamics, SPb, 2002. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI