Physical simulation of thermal and hydrjdynamic characterictics of channels with oval-trench vortex generators


Аuthors

1, Isayev S. A.2*, S. 1, Popov I. A.1**, Gortyshov Y. F.1

1. Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia
2. Saint-Petersburg State University of Civil Aviation, 38, Pilotov str., St. Petersburg, 196210, Russia

*e-mail: isaev3612@yandex.ru
**e-mail: popov-igor-alex@yandex.ru

Abstract

Vortex generation and flow disruption in heat exchangers passages by means of surface modification are a widely used passive heat transfer augmentation techniques. The present paper contains the results of numerical and experimental studies of the hydraulic resistance and heat transfer in the rectangle duct with oval-trench and oval-arc shaped dimples applied to the heat transfer surface. For the turbulent flow in the duct (Pr = 0.71, Red = 3200—9⋅104 — for heat transfer determination and Red = 500⋅104 — for the friction factor measurements) rational geometrical parameters of the oval-trench dimple were determined: relative elongation of dimple l/b = 5.57–6.78 and relative depth l/b = 5.57–6.78, while the value of the attack angle to the mean flow was fixed φ = (45–60)°. The comparison of the experimental and numerical modeling for the flow in the narrow duct over the surface with a singleand multi-row dimple arrangement has revealed a good agreement. It was found that the average heat transfer coefficients in such ducts could be increased 1.5–2.5 times by means of singleand multi-row dimples application on the heat transfer surface. The heat transfer augmentation for the surfaces with the oval-arched dimples was found to be 10% greater than the one for the oval-trench dimples. The corresponding friction factor augmentation was found to be 125–300% in comparison to the smooth surface duct. The obtained experimental data were used for the data generalization. Derived generalized equation allows predicting the friction factor and heat transfer coefficients values for the flow over the single-row oval-trench simple arrangement. The maximal deviation of the experimental data from the proposed equations was found to be 20%. The application of the artificial neural networks for predicting the hydraulic resistance and heat transfer augmentation in such ducts was presented.

References

  1. Shchukin A.V., Kozlov A.P., Agachev R.S., Chudnovsky Ya.P. Intensifikatsiya teploobmena sfericheskimi vyemkami pri vozdejstvii vozmushhayushhikh faktorov [Intensification of heat exchange by spherical dimples under the influence of perturbing factors]. Kazan: Kazan State Technical University, 2003. 143 p. In Russ

  2. Khalatov A.A. Teploobmen i gidrodinamika okolo poverkhnostnykh uglublenij (lunok) [Heat transfer and hydrodynamics near surface depressions (dimples)]. Kiev: Institute of Engineering Thermophysics of NAS of Ukraine, 2005. 76 p. In Russ

  3. Samoorganizatsiya smercheobraznykh struj v potokakh vyazkikh sploshnykh sred i intensifikatsiya teplomassoobmena, soprovozhdayushhaya eto yavlenie [Self-organization of tornado-like jets in flows of viscous continuous media and intensification of heat and mass transfer] (Kiknadze G.I., Gachechiladze I.A., Alekseev V.V.) Moscow: Publishing house of Moscow Power Engineering Institute, 2005. 82 p.In Russ

  4. Bystrov Yu.A., Isaev S.A., Kudryavtsev N.A., Leontiev A.I. Chislennoe modelirovanie vikhrevoj intensifikatsii teploobmena v paketakh trub [Numerical simulation of vortex heat transfer intensification in tube packages]. St.Petersburg: Sudostroenie, 2005. 398 p. In Russ

  5. Dzyubenko B.V., Kuzma-Kichta Yu.A., Leontiev A.I., Fedik I.I., Kholpanov L.P. Intensification of heat and mass transfer on macro-, micro-, and nanoscales. Begell, 2016. 630 p.

  6. Gortyshov Yu.F., Popov I.A., Olympiev V.V., Shchelchkov A.V., Kaskov S.I. Teplogidravlicheskaya effektivnost’ perspektivnykh sposobov intensifikatsii teplootdachi v kanalakh teploobmennogo oborudovaniya. Intensifikatsiya teploobmena [Thermohydraulic efficiency of perspective methods of heat transfer intensification in heat exchange equipment channels. Heat transfer intensification]. Kazan: Center for innovative technologies, 2009. 531 p. In Russ

  7. Teploobmen i gidravlika v kanalakh s oblunennymi poverkhnostyami [Heat Transfer and hydraulics in channels with dimple surfaces] (Sokolov N.P., Polishchuk V.G., Andreev K.L. et al.). St. Petersburg: Polytechnic University Publishing house, 2012. 288 p. In Russ

  8. Gotovsky M.A., Demenok S.L., Medvedev V.V., Sivukha S.M. Teplootdacha i soprotivlenie kanalov s olunennymi poverkhnostyami [Heat transfer and resistance of channels with dimple surfaces]. St. Petersburg: Strata, 2016, 211 p. In Russ

  9. Leontiev A.I., Volchkov E.P., Koroteev A.A., KuzmaKichta Yu.A., Dzyubenko B.V., Dragunov Yu.G., Isaev S.A., Popov I.A., Terekhov V.I. Vikhrevye technologii dlya energetiki [Vortical technologies for power engineering]. Moscow: Publishing house of Moscow Power Engineering Institute, 2017. 350 p. In Russ

  10. Rashidi S., Hormozi F., Sunden B., Mahia O. Energy saving in thermal energy systems using dimpled surface technology — A review on mechanisms and applications. Applied Energy, 2019,vol. 250, pp. 1491–1547. https://doi.org/10.1016/ j.apenergy.2019.04.168

  11. Isaev S.A., Leontiev A.I., Mityakov A.V., Pyshny I.A. Intensification of tornado turbulent heat exchange in asymmetric holes on a plane wall. Jouranl of Engineering Physics and Thermophysics, 2003, vol. 76, no. 2, pp. 266–270. https://doi.org/10.1023/A:1023636730700

  12. Isaev S.A., Popov I.A., Leontiev A.I., Gul’tsova M.E. Transformation and intensification of tornado-like flow in a narrow channel during elongation of an oval dimple with constant area. Technical Physics Letters, 2015, vol. 41, no. 6, pp. 606–609. DOI: 10.1134/S106378501 5060231

  13. Isaev S.A., Schelchkov A.V., Leontiev A.I., Gortyshov Yu.F., Baranov P.A., Popov I.A. Tornado-like heat transfer enhancement in the narrow plane-parallel channel with the oval-trench dimple of fixed depth and spot area. Int. J. Heat and Mass Transfer, 2017, vol. 109, pp. 40−62. DOI: 10.1016/j.ijheatmasstransfer.2017.01.103

  14. Isaev S., Leontiev A., Chudnovsky Y., Popov I. Vortex heat transfer enhancement in narrow channels with a single oval-trench dimple oriented at different angles to the flow. J. Enhanced Heat Transfer, 2018, vol. 25, no. 6, pp. 579−604. DOI: 10.1615/JEnhHeatTransf.v25.i6.40

  15. Isaev S.A., Baranov P.A., Leontiev A.I., Popov I.A. Intensification of a laminar flow in a narrow microchannel with single-row inclined oval-trench dimples. Technical Physics Letters, 2018, vol. 44, no. 5, pp. 398–400. DOI: 10.1134/S1063785018050061

  16. Isaev S.A., Leontiev A.I., Milman O.O., Popov I.A., Sudakov A.G. Influence of the depth of single-row ovaltrench dimples enclosed to laminar air flow on heat transfer enhancement in a narrow micro-channel. Int. J. Heat and Mass Transfer, 2019, vol. 134, pp. 338–358. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.175

  17. Isaev S.A., Leontiev A.I., Baranov P.A., Popov I.A., Shchelchkov A.V., Gortyshov Yu.F., Skrypnik A.N., Mironov A.A. Teploobmennaya poverkhnost’ [Heat exchange surface]. Patent RU no. 2 684 303, 2018. 11 р.

  18. Isaev S.A., Gritckevich M.S, Leontiev A.I., Popov I.A., Sudakov A.G. Anomalous intensification of a turbulent separated flow in inclined, single-row, oval-trench dimples on the wall of a narrow channel. High Temperature, 2019, vol. 57, no. 5, pp. 771–774. DOI: 10.1134/S0018151X190 40084

  19. Isaev S.A., Gritskevich M.S., Nikushchenko D.V., Leon- tyev A.I., Milman O.O. Turbulent flow acceleration and abnormal intensification of the separated flow in a channel with dense arrangement of inclined single-row oval-trench dimples. Thermophysics and Aeromechanics, 2019, vol. 26, no. 5, pp. 651–656. https://doi.org/10.1134/S086986431 9050032

  20. Isaev S.A., Gritckevich M.S, Leontiev A.I., Milman O.O., Nikushchenko D.V. NT Vortex enhancement of heat transfer and flow in the narrow channel with a dense packing of inclined one-row oval-trench dimples. International Journal of Heat and Mass Transfer, 2019, vol. 145, article 118737. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118737

  21. Kiselev N.A., Burtsev S.A., Strongin M.M., Vinogradov Yu.A. Eksperimental’noe issledovanie teploobmena i soprotivleniya lunok slozhnoj formy [Experimental investigation of heat transfer and drag on dimples of complicated shape]. Problemy gаzodinаmiki i teplomаssobmenа v ehnergeticheskikh ustаnovkаkh. Trudy XXI Shkoly-seminara molodykh uchenykh i spetsialistov [Problems of gas dynamics and heat and mass exchange in power plants. Proceedings of the XXI School-Seminar for Young Scientists and Specialists]. Moscow: Publishing house of Moscow Power Engineering Institute, 2017. pp. 124–127. In Russ

  22. Voskoboynik A.V. Passivnoe upravlenie formirovaniem vikhrevykh struktur vnutri polutsilindricheskogo uglubleniya [Passive control of the formation of vortex structures inside a semi-cylindrical dimples]. Vіsnik Donets’kogo natsіonal’nogo unіversitetu, Ser. А: Prirodnichі nauki — Bulletin of Donetsk University. Series А. Natural Sciences, 2009, no. 1, pp

  23. Voropaev G.A., Voskoboinick A.V., Voskoboinick V.A., Isaev S.A. Vizualizatsiya laminarnogo obtekaniya oval’nogo uglubleniya [Laminar flow visualization over oval dimple]. Prikladnaya gidromekhanika — Applied Gidromekhanika, 2009, vol. 11, no. 4, pp. 31–36. In Russ

  24. Sergievsky E.D., Arbatsky A.A. Intensifikatsiya teploobmena putem naneseniya oval’nykh lunok na teploobmennuyu poverkhnost’ [Intensification of heat exchange by applying oval dimples to the heat exchange surface]. Trudy 5 Rossijskoj natsional’noj konferentsii po teploobmenu. T. 6. Intensifikatsiya teploobmena. Radiatsionnyj i slozhnyj teploobmen [Proceedings of the 5th Russian national conference on heat exchange. Vol. 6. Intensification of heat transfer. Radiation and complex heat exchange]. Moscow: Publishing house of MEI, 2010. pp. 141–144. In Russ

  25. Popov I.А., Schelchkov А.V., Ryzhkov D.V., Uljano- va R.А. Vikhreobrazovanie v otryvnykh potokakh na poverkhnostyakh s uglubleniyami razlichnoj formy [Vortex generation in separated flows on surfaces with different shaped dimples]. Trudy Аkademehnergo — Transaction of Akademenergo, 2010, no. 3, pp. 7–14. In Russ

  26. Isaev S.A., Leontiev A.I., Baranov P.A, Popov I.A., Shchelchkov A.V., Gortyshov Yu.F., Skrypnik A.N., Mironov A.A. Teploobmennaya poverkhnost’ [Heat exchange surface]. Patent RU no. 2716958, 2019. 10 p.

  27. Mironov A.A., Isaev S.A., Gortyshov Yu.F., Popov I.A., Shchelchkov A.V., Sagidullin Zh.A. Poverkhnostnye vikhregeneratory dlya intensifikatsii teplootdachi [Surface vortex generators for heat transfer intensification]. Trudy 7 Rossijskoj natsional’noj konferentsii po teploobmenu. [Proceedings of 7th Russian national conference on heat exchange]. 2018, pp. 398–403. In Russ

  28. Mironov A.A. K vyboru ratsional’noj formy i razmerov poverkhnostnykh vikhrigeneratorov dlya intesifikatsii teplootdachi [On the choice of rational shape and size of surface vortex generators for heat transfer intensification]. Materialy Vserossiyskoy nauchno-prakticheskoy konferentsii s mezhdunarodnym uchastiem «Novyye tekhnologii, materialy i oborudovaniye rossiyskoy aviakosmicheskoy otrasli» [Materials All-Russian Scientific and Practical Conference with International Participation «New Technologies, Materials and Equipment of the Russian Aerospace Industry»]. Kazan, 2018, vol. 1, pp. 374–391. In Russ

  29. Jambunathan K., Hartle S.L., Ashforth-Frost S., Fontama V.N. Evaluating convective heat transfer coefficients using neural networks. International Journal of Heat and Mass Transfer, 1996, vol. 39, no. 11, pp. 2329–2332. https://doi.org/10.1016/0017-9310(95)00332-0

  30. Zdaniuk G.J., Chamra L.M., Walters D.K. Correlating heat transfer and friction in helically-finned tubes using artificial neural networks. International Journal of Heat and Mass Transfer, 2007, vol. 50, no. 23-24, pp. 4713–4723. https://doi.org/10.1016/j.ijheatmasstransfer.2007.03.043

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI