Research of electrostatic fields influence on heat transfer at free convection of kerosene


Аuthors

Altunin K. V.

Kazan National Research Technical University named after A.N. Tupolev, 10, Karl Marks str., Kazan, 420111, Russia

e-mail: altkonst881@yandex.ru

Abstract

The article presents the results of experimental and theoretical research with liquid hydrocarbon fuel (coolant) under free and electric convection. The references review was carried out due to the theme of research and primarily focused on electric convection application closely. It is widely known that it is possible to increase heat transfer coefficient without use of multifarious types of so-called passive heat transfer intensification ways including application of special inserted intensifiers (e.g., screw, local and plate flow swirlers), various finning of heat transfer surface, creation of concave recesses, etc. Some main advantages of using electric fields in various media have been observed. It has been found that application of electric fields is an effective way of not only intensification of heat transfer, but also mass transfer processes that makes it possible to increase intensity of such processes by as much as 2-10 times. There are an experimental setup scheme and a working area picture with electric fields in the article. Appropriate pressure was set in a special chamber (so-called high-pressure bomb) during experiments, a small steel plate was heated by Joule heat, electrodes in the form of coaxial needles were placed between the plate, and an electrostatic field was created between these needle-shape electrodes. Afterwards it has been found that it is real to increase heat transfer coefficient in the TS-1 kerosene medium further when increasing a number of coaxial needle-shape electrodes. An experimental optical Tepler installation was successfully used and made it possible to visualize influence of an electric wind on heat processes. A new electric convection number was created by the article author, and this is based upon electric voltage, specific electrical resistance, a distance between electrodes and heat flux. Some research results are shown as special graphs here. A generalization has been made in the form of new criterion equations with the created electric convection number. In addition, in should be said that the new electric convection number as experimental and theoretical studies show can be suitable for accurate description of electrostatic fields influence in the medium of TS-1 kerosene, but it may be successfully used for creation of various heat transfer equations based on research in other hydrocarbon media. It is interesting to notice that special areas of electrical intensity were found while generalizing the experimental data, where heat transfer coefficients α were in a certain range. Similar results were obtained at other pressures. Thus, it seems to be evident that the use of electrostatic fields cannot but influence the overall enhancement of heat transfer in the medium of aviation kerosene. And the main goal of research has been successfully achieved because the new electric convection equations have been created that makes it possible to describe simultaneous influence of electrostatic fields at natural convection with appropriate accuracy.

Keywords:

Research of electrostatic fields influence on heat transfer at free convection of kerosene

References

  1. Belozercev V.N., Biryuk V.V., Dovgyallo A.I., Nekrasova S.O. Uglanov D.A., Sarmin D.V. Intensifikaciya teploobmena [Heat transfer intensification]. Samara: Izd-vo Samarskogo universiteta, 2018. 208 p. In Russ

  2. Savinyh B.V., Gumerov F.M. Svojstva perenosa dielektricheskih zhidkostej i teplo-massoobmen v elektricheskih polyah [Transport properties of dielectric fluids and heat-mass transfer in electric fields]. Kazan: Fen, 2002. 384 p. In Russ

  3. Altunin K.V. Razrabotka kriteriev podobiya elektrokonvekcii v uglevodorodnyh sredah [Elaboration of electric convection similarity criterions]. Izvestiya vysshih uchebnyh zavedenij. Problemy energetiki — Power Engineering: Research, Equipment, Technology, 2012, no. 1-2, pp. 168–171. In Russ

  4. Aladiev I.T., Efimov V.A. Intensifikaciya teploobmena v elektricheskih polyah [Intensification of heat transfer in electrical fields]. Inzhenerno-fizicheskij zhurnal — Journal of Engineering Physics, 1963, vol. 6, no. 8, pp. 125–136. In Russ

  5. Aliev I.N. O vozmozhnosti ispol’zovaniya elektromagnitnogo polya dlya ochistki ot gazovyh puzyrej setok v toplivnyh sistemah raket [On the possibility of using an electromagnetic field to remove gas bubbles from meshes in rocket fuel systems]. Magnitnaya Gidrodinamika, 1996, no. 3, pp. 376–378. In Russ

  6. Altunin V.A. Issledovanie vliyaniya elektrostaticheskih i magnitnyh polej na osobennosti teplootdachi k uglevodorodnym goryuchim i ohladitelyam [Investigation of the influence of electrostatic and magnetic fields on the characteristics of heat transfer to hydrocarbon fuels and coolants]. Kazan: Publishing house of Kazan State University named after V.I. Ulyanov-Lenin, 2006. 230 p. In Russ

  7. Baboj R.F., Bologa M.K. Teploobmen pri kipenii organicheskih zhidkostej v elektricheskom pole [Heat transfer during boiling of organic liquids in an electric field]. Teploi massoperenos — Heat and mass transfer, 1968, vol. 2, pp. 197–204. In Russ

  8. Butkov V.V., Vishnyakov V.V. Intensifikaciya processov v massoobmennom oborudovanii himicheskih proizvodstv nalozheniem elektricheskih polej [Intensification of processes in the mass transfer equipment of chemical industries by the imposition of electric fields]. Elektronnaya obrabotka materialov — Electronic material processing, 1983, no. 4, pp. 30–35. In Russ

  9. Kazackaya L.S., Tolchinskaya O.E., Solodovichenko I.M. Toki, ogranichennye prostranstvennym zaryadom, v zhidkih organicheskih poluprovodnikah [Currents limited by space charge in liquid organic semiconductors]. Elektronnaya obrabotka materialov — Electronic material processing, 1973, no. 4, pp. 70–72. In Russ

  10. Bologa M.K., Grosu F.P., Kozhuhar’ I.A. Elektrokonvekciya i teploobmen. Pod. red. prof. G.A. Ostroumova [Electroconvection and heat transfer. Ed. prof. G.A. Ostroumov]. Kishinev: Shtiinca, 1977. 320 p. In Russ

  11. Altunin V.A., Altunin K.V., Aliev I.N., Gortyshov Yu.F., Dresvyannikov F.N., Obuhova L.A., Tarasevich S.E., Yanovskaya M.L. Analysis of investigations of electric fields in different media and conditions. Journal of Engineering Physics and Thermophysics, 2012, vol. 85, no. 4, pp. 959–979. DOI: 10.1007/s10891-012-0736-4

  12. Grosu F.P., Bologa M.K., Bologa Al.M. Eculiar features of heat transfer under conditions of electric convection. Surface Engineering and Applied Electrochemistry, 2010, vol. 46, no. 4, pp. 324–335.

  13. Shatalov A.F., Borisov E.S., Shatalov N.A. Issledovanie elektrokonvektivnogo teploobmena v magnitnoj zhidkosti i perspektivy ego primeneniya dlya ohlazhdeniya transformatorov [Investigation of electro convective heat transfer in a magnetic fluid and prospects of its application for transformer cooling]. Izvestiya vuzov. Severo-kavkazskij region. Tekhnicheskie nauki — Bulletin of Higher Educational Institutions. North Caucasus Region. Technical Sciences, 2015, no. 4, pp. 35–39. In Russ DOI: 10.17213/0321-2653-20154-35-39

  14. Kartavyh N.N., Il’in V.A. Chislennoe modelirovanie elektrokonvekcii slaboprovodyashchej zhidkosti v peremennom elektricheskom pole [Numerical simulation of electroconvection of a poorly conducting fluid in an alternating electric field]. Vychislitel’naya mekhanika sploshnyh sred — Computational Continuum Mechanics, 2014, vol. 7, no. 3, pp. 260–269. In Russ DOI: 10.7242/1999-6691/2014.7.3.26

  15. Bologa M.K., Grosu F.P., Kozhevnikov I.V. Relaksaciya vyhodnyh harakteristik elektrogidrodinamicheskogo nasosa [Relaxation of the output characteristics of the electrohydrodynamic pump]. Elektronnaya obrabotka materialov — Surface Engineering and Applied Electrochemistry, 2017, vol. 53, no. 6, pp. 72–77. In Russ DOI: 10.5281/zenodo. 1051298.

  16. Romanchikov S.A. Elektricheskaya plita PE-UIEV [Convection type electric stove with air ionization]. Tekhnika i tekhnologiya pishchevyh proizvodstv — Food Processing: Techniques and Technology, 2018, vol. 49, no. 4, pp. 131–138. In Russ DOI: 10.21603/2074-9414-2018-4-131-138

  17. Zhukov A.N., Kurochkin V.E., Sharfarec B.P. O nelinejnosti elektrokineticheskih yavlenij. Obzor [On the nonlinearity of electrokinetic phenomena. Overview]. Nauchnoe priborostroenie, 2020, vol. 30, no. 1, pp. 17–21. In Russ DOI: 10.18358/np-30-1-i1721

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI