Investigation of the effect of the scale factor on the curing kinetics of polymer composite parts


Аuthors

Yangyang Chen 1*, Pyi Phyo Maung 1, 2

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: yangyangchen@mail.ru

Abstract

The paper presents a computational method to determine the kinetics of a wing stringer made of epoxy resin and carbon fabric. The quality of the stringer depends on the technical process of curing, which is the last step in the technical process of manufacturing products fr om polymer composite materials. The main reason for the decrease in quality is the large temperature gradient in the thickness of the product, which is particularly important when manufacturing large structures, including the stringer of the A319 aircraft. We used the ESI PAM-RTM software package to obtain the temperature fields and kinetic parameters of the curing process under different curing modes depending on the geometric dimensions of the stringer. The simulation was performed taking into account the change in the phase state of the binders and their exothermic effects during curing. Curing mode of the stringer: heating to the gelation temperature, holding and heating to 160°C, rate of temperature rise: 3 K/min. Finally, the temperature field, curing degree field and heat release intensity were determined by simulation. Three variants of stringer, differing in thickness, were simulated. To analyze the results, the stringer was divided into five sections to identify wh ere the greatest overheating occurred. It was found that due to the different heat released during the curing process of the stringer uneven heating occurs, which may result in temperature gradients and curing. With an increase in the thickness of the stringer by 3 times, the intensity of heat release increases by more than 5 times, the maximum temperature increases by 40%, the average temperature gradient over the stringer increases by 4.2 times, the average value of the curing degree gradient increases by 2 times, and the difference in the achieved heat release intensity over the stringer increases by 14 times.

References

  1. Chernovolov R.A., Garifullin M.F., Kozlov S.I. Validatsiya protsedur proektirovaniya i izgotovleniya dinamicheski podobnykh modelej letatel’nykh apparatov s primeneniem polimernykh kompozitsionnykh materialov [Ation of designing and manufacturing procedures of aircraft dynamically similar models with polymer composite materials application]. Vestnik Moskovskogo aviatsionnogo instituta — Aerospace MAI journal, 2019, vol. 26, no. 3, pp. 102–112. In Russ

  2. Basharov E.A., Vagin A.U. Аnaliz primeneniya kompozitsionnykh materialov v konstruktsii planerov vertoletov [Analysis of polymeric composite materials application for helicopter airframe design]. Trudy MАI, 2017, no. 92. 13 p.In Russ

  3. Endogur A.I., Kravtsov V.A. Ideologiya proektirovaniya aviatsionnykh konstruktsij iz polimernykh kompozitsionnykh materialov [Ideology of design of aviation designs from polymeric composite materials]. Trudy MAI, 2015, no. 81, 4 p.In Russ

  4. Petrova A.P., Malysheva G.V. Klei, kleevye svyazuyushhie i kleevye prepregi: uchebnoe posobie [Adhesives, adhesive binders and adhesive prepregs: A training manual]. Moscow: VIAM, 2017. 472 p.In Russ

  5. Kablov E.N, Chursova L.V, Lukina N.F, Kutsevich K.E., Rubtsova E.V., Petrova A.P. A study of epoxide—polysulfone polymer systems for high-strength adhesives of aviation purpose. Polymer Science, Series D, 2017, vol. 10, no. 3, pp. 225–229. In Russ

  6. Baurova N.I., Zorin V.A. Primenenie polimernykh kompozitsionnykh materialov pri proizvodstve i remonte mashin [The use of polymer composite materials in the manufacture and repair of machines]. Moscow: MADI, 2016. 264 p.In Russ

  7. Simonov-Emelyanov I.D. Vliyanie molekulyarnoj massy dianovykh ehpoksidnykh oligomerov promyshlennykh marok na kinetiku usadki pri otverzhdenii [The influence of the molecular weight of industrial grade diane epoxy oligomers on the kinetics of shrinkage during curing]. Vestnik MITKHT — Bulletin of Lomonosov Moscow State University of Fine Chemical Technologies, 2011, vol. 6, no. 4, pp. 89–92. In Russ

  8. Pye Phi Maung, Malysheva G.V., Tatarnikov O.V. Otrabotka tekhnologicheskikh rezhimov otverzhdeniya pri izgotovlenii i remonte izdelij iz kompozitov [Improvement of curing conditions during production and repair of composite components]. Remont, vosstanovlenie, modernizatsiya — Repair, restoration, modernization, 2016, no. 8, pp. 7–11. In Russ

  9. Kepman A.V., Makarenko I.V., Strakhov V.L. Eksperimental’noe issledovanie kompleksa termokhimicheskikh, teplofizicheskikh svojstv i kinetiki protsessa otverzhdeniya polimernykh kompozitsionnykh materialov [Experimental study of polymer composite materials thermochemical and thermophysical properties and their curing process kinetics]. Kompozity i nanostruktury — Composites and nanostructures, 2016, vol. 8, no. 4, pp. 251–264. In Russ

  10. Marakhovsky P.S., Barinov D.Ya., Chutskova Ye.Yu., Melnikov D.A. Otverzhdenie mnogoslojnykh polimernykh kompozitsionnykh materialov. Chast’ 2. Formovanie tolstostennoj plity stekloplastika [The curing of multilayered polymer composite materials. Part 2. The molding of thickwalled glass-plastic plate] // Vse materialy. Entsiklopedicheskiy spravochnik, 2018, no. 6, pp. 7–14. In Russ

  11. Khaskov M.A., Safronov E.V. Modelirovanie protsessov otverzhdeniya termoreaktivnykh matrits na primere slozhnoprofil’nogo obraztsa [The optimization of thermosetting matrixes curing schedule on the example of complex shape sample]. Trudy VIAM —Proceedings of VIAM, 2019, no. 12, pp. 46–54. In Russ DOI: 10.18577/2307-60462019-0-12-46-54

  12. Barinov D.Y., Mayorova I.A., Marahovskij P.S., Zuev A.V., Kucevich K.E., Lukina N.F. Matematicheskoe modelirovanie temperaturnykh polej pri otverzhdenii tolstostennoj plity stekloplastika [Mathematical modeling of temperature fields during curing of thick-walled fiberglass plate]. Perspektivnye Materialy, 2015, no. 4, pp. 5–14. In Russ

  13. Ewert U., Redmer B., Rädel C., Schnars U., Henrich R., Bavendiek K., Jahn M. Mobile computed tomography for inspection of large stationary components in nuclear and aerospace industries. Materials Transactions, 2012, vol. 53, no. 2, pp. 308–310. https://doi.org/10.2320/matertrans.I-M2011848

  14. Laidler K.J. The development of the Arrhenius equation. Journal of chemical Education, 1984, vol. 61, no. 6, pp. 494–498.

  15. Yangyang Chen, Marakhovsky P.S., Malysheva G.V. Determination of thermophysical properties of epoxy materials during their curing. Trudy VIAM —Proceedings of VIAM, 2018, no. 9 (69), pp. 119–123. In Russ. DOI: 10.18577/2307-6046-2018-0-9-119-123

  16. Yangyang Chen, Pyi Phyo Maung, Malysheva G.V. Opredelenie kinetiki otverzhdeniya detalej iz polimernykh kompozitsionnykh materialov na osnove ehpoksidnykh svyazuyushhikh [Cure kinetics determining of parts made of polymer composite materials based on epoxy binders]. Teplovye protsessy v tekhnike — Thermal processes in engineering, 2020, vol. 12, no. 4, pp. 185–191. DOI: 10.34759/ tpt-2020-12-4-185-191

  17. Zhang J. Xu Y, Huang P.Effect of cure cycle on curing process and hardness for epoxy resin. Express Polymer Letters, 2009, vol. 3, no. 9, pp. 534–541. DOI: 10.3144/expresspolymlett.2009.67

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI