Improving the reliability of prediction the thermal-hydraulic characteristics of fin-tube radiators of air cooling devices of power plants based on numerical and experimental study


Аuthors

1, 1, Zhukova Y. V.2, Y. 1, Y. 1, Marshalova G. S.2*, G. 1, G. 3, Popov I. A.1**, I. 1, I. 4, I. 1, Khabibullin I. I.3***, Chorny A. D.2****

1. Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia
2. A. V. Luikov Heat and Mass Transfer Institute of NAS of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus
3. "NIIturbocompressor n.a. V. B. Shnepp", Russia, 420029, Kazan, Sibirskiy trakt, 40
4. Firm "Termokam", Russia, village Kamskiye Polyany, str. Entuziastov, 3

*e-mail: galiana.sidorik@icloud.com
**e-mail: popov-igor-alex@yandex.ru
***e-mail: rim3li490@mail.ru
****e-mail: anchor@hmti.ac.by

Abstract

The aim of the work was to determine the efficiency of using flat finned tubes obtained by extrusion with subsequent processing by deforming cutting, and to test approaches for numerical calculation of a finned-tube oil radiator and an air cooling device for oil in power plants and compressor stations. On the basis of various efficiency criteria, the choice of geometric parameters of samples of the heat exchange section in the form of a finned flat tube for an air cooling device (ACD) was made and justified. Based on the results of numerical studies and partial comparison with experimental data, it can be concluded that the use of numerical research methods allows us to reliably and accurately predict the thermal-hydraulic characteristics of finned-tube oil radiators. Based on the methods of numerical simulation of convective heat transfer, a calculation method was developed and tested using the representation of the finned part of the heat transfer surface in the form of porous inserts. The developed method reduces the requirements for equipment for numerical modeling and reduces the calculation time. Numerical studies of the thermohydraulic characteristics of some developed types of ACD of oil showed a discrepancy with the design values for thermal power and revealed the reasons for this discrepancy. Based on numerical studies, a number of recommendations have been developed for further improvement of ACD of oil layout solutions to improve its thermal efficiency and aerodynamic perfection.

References

  1. GOST 15150-69. Mashiny, pribory i drugie tekhnicheskie izdeliya. Ispolneniya dlya razlichnykh klimaticheskikh rajonov. Kategorii, usloviya ehkspluatatsii, khraneniya i transportirovaniya v chasti vozdejstviya klimaticheskikh faktorov vneshnej sredy [State Standard 15150-69. Machines, instruments and other industrial products. Modifications for different climatic regions. Categories, operating, storage and transportation conditions as to environment climatic aspects influence]. Moscow: Standartinform Publ., 2010. 71 p.

  2. Kuntysh V.B., Piir A.E. Analysis of the thermal efficiency, volume, and weight characteristics of heat exchange sections of air cooling equipment. Chemical and Petroleum Engineering, 2009, vol. 45, no. 5–6, pp. 257–262. DOI: 10.1007/s10556-009-9183-2

  3. Popov I.A., Yakovlev A.B., Shchelchkov A.V., Ryzhkov D.V., Obukhova L.A. Perspektivnye metody intensifikatsii teploobmena dlya teploehnergeticheskogo oborudovaniya [Perspective methods of a heat exchange for the heat power equipment intensification]. Ehnergetika Tatarstana – Energy of Tatarstan, 2011, no. 1 (21), pp. 25–29. In Russ.

  4. Olympiev V.V. Enhancement of heat transfer and the potential for energy conservation in industrial oil coolers. Thermal Engineering, 2010, vol. 57, no. 8, pp. 702–713. DOI: 10.1134/S0040601510080148

  5. Brodov Yu.M., Aronson K.E., Ryabchikov A.Yu., Bukhman G.D. Razrabotka i opytno-promyshlennaya proverka kompleksa meropriyatij po povysheniyu effektivnosti i nadezhnosti raboty maslookhladitelej [Development and pilot testing of a set of measures to improve the efficiency and reliability of oil coolers]. Elektricheskie stantsii – Electric Stations, 1994, no. 12, pp. 33. In Russ.

  6. Pismenny E.N., Demchenko V.G., Terekh A.M., Semenyako A.V., Kulik K.V. Economizer-utilizer of flat-oval pipes with incomplete fins. Eastern European Journal of Advanced Technologies, 2010, vol. 45, pp. 15–19.

  7. Popov I.A., Makhyanov H.M., Gureev V.M. Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena: Intensifikatsiya teploobmena [Physical bases and industrial application of heat exchange intensification: Heat exchange intensification]. Kazan: Center of innovative technologies, 2009, 560 p. In Russ.

  8. Sidorik G.S. Eksperimental'nyj stend dlya issledovaniya teplovykh i aerodinamicheskikh protsessov smeshanno-konvektivnogo teploobmena kruglorebristykh trub i puchkov [The experimental stand for a research of thermal and aerodynamic processes of mixed convection heat exchange for round-funed pipes and bunches]. Trudy BGTU. Seriya 1: Lesnoe khozyajstvo, prirodopol'zovаnie i pererаbotkа vozobnovlyaemykh resursov – Proceedings of BSTU, 2018, no. 1(204), pp. 85–93. In Russ. https://elib.belstu.by/handle/123456789/24525

  9. Bystrov Yu.A., Isaev S.A., Kudryavtsev N.A., Leontiev A.I. Chislennoe modelirovanie vikhrevoj intensifikatsii teploobmena v paketakh trub [Numerical simulation of vortex heat transfer intensification in tube packages]. St.Petersburg: Sudostroenie, 2005. 398 p. In Russ.

  10. Kuntysh V.B., Bessonnyi A.N., Brill' A.A. Improving the energy efficiency of air-cooled heat exchangers. Chemical and Petroleum Engineering, 1997, vol. 33, no. 4, pp. 402–407. DOI: 10.1007/BF02416728

  11. Shaikhutdinov A.Z., Lifanov V.A., Malanichev V.A., Shaikhutdinov A.Z. Sovremennye АVO-gaza – resurs energosberezheniya v gazovoj otrasli [Modern gas air cooling devices – energy saving resource in the gas industry]. Gazovaya promyshlennost' – Gas industry, 2010, no. 9, pp. 40–41. In Russ.

  12. Aksenov P.A. et al. Аpparaty vozdushnogo okhlazhdeniya novogo pokoleniya. Optimal'noe sochetanie parametrov teploobmennogo bloka i ventilyatornoj ustanovki. Snizhenie energopotrebleniya apparata i udobstvo ego ekspluatatsii [New generation air cooling devices. The optimal combination of parameters of the heat exchange unit and fan installation. Reducing the power consumption of the device and the convenience of its operation]. Neftegaz, 2003, no. 2, pp.109–111. In Russ.

  13. Popov I.A., Gortyshov Yu.F., Olympiev V.V. Industrial applications of heat transfer enhancement: the modern state of the problem (A review). Thermal Engineering, 2012, vol. 59, no. 1, pp. 1–12. DOI: 10.1134/S0040601512010119

  14. Bessonny A.N. et al. Osnovy rascheta i proektirovaniya teploobmennikov vozdushnogo okhlazhdeniya. Pod red. А.N. Bessonnogo, V.B. Kuntysha [Fundamentals of calculation and design of heat exchangers for air cooling. Ed. A.N. Bessonny, V.B. Kuntysh]. St.Pb.: Nedra, 1996. 512 p. In Russ.

  15. Kuntysh V.B. et al. Inzhenernyj metod teplovogo rascheta apparata vozdushnogo okhlazhdeniya v rezhime svobodnokonvektivnogo teploobmena [Engineering method of thermal calculation of an air cooling apparatus in the free convective heat exchange mode]. Khimicheskoe i neftegazovoe mashinostroenie – Chemical and Oil and Gas Engineering, 2013, no. 12, pp. 3–6. In Russ.

  16. Baigaliev B.E., Shchelchkov A.V., Yakovlev A.B., Gortyshov P.Yu. Teploobmennye apparaty [Heat exchangers]. Kazan: Publishing House of Kazan State Technical University, 2012. 180 p. In Russ.

  17. Nizamutdinov R.M., Khabibullin I.I., Kadyrov R.G. Аpparat vozdushnogo okhlazhdeniya masla [Air oil cooler]. Patent RF, no. 190872, 2019. 8 p.

  18. Yakubovich A.I., Tarasenko V.E. K voprosu rascheta poverkhnosti okhlazhdeniya mnogoryadnykh radiatorov traktorov «Belarus'» [On the issue of calculating the cooling surface of multi-row radiators of tractors "Belarus"]. Vestnik GGTU im. P.O. Sukhogo – Bulletin of the Sukhoi State Technical University, 2010, no. 2, pp. 49–58. In Russ.

  19. Marshalova G.S., Baranova T.A., Chorny A.D. Ispol'zovanie metodov chislennogo modelirovaniya dlya rascheta radiatora okhlazhdeniya transportnykh sredstv [Using numerical modeling methods to calculate the vehicle cooling radiator]. Sbornik dokladov Mezhdunarodnoj molodezhnoj nauchnoj konferentsii «XXIV Tupolevskie chteniya (shkola molodykh uchenykh) (Collection of reports of the International Youth Scientific Conference "XXIV Tupolev Readings (School of Young Scientists). Kazan: Publishing house of IP Sagieva A.R., 2019, vol. 2, pp. 252–256. In Russ.

  20. Idelchik I.E. Handbook of Hydraulic Resistance. Begell House, 1994, 790 p.

  21. Menter F.R. Zonal two equation k- turbulence models for aerodynamic flows. AIAA Paper, 1993, no. 2906, pp. 1–21.

  22. Gureev V.M., Gureev M.V., Mats E.B., Yarkovskiy I.Y. The study of the engine cooling system in regulating the air temperature at the outlet of the heater of air conditioner system of the truck cabin. International Journal of Mechanical Engineering and Technology, 2018, vol. 9, no. 2, pp. 292–299.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI