Metastable overheated water atomization: certain results of experimental studies


Аuthors

Zalkind V. I., Zeigarnik Y. A., Nizovskii V. L., Nizovskii L. V.*, Shchigel S. S.

Joint Institute for High Temperatures of the Russian Academy of Sciences, 13, Izhorskaya str., Moscow, 125412, Russia

*e-mail: levmobile@mail.ru

Abstract

Experimental study of metastable overheated water atomizing while its discharge into atmosphere from cylindrical and convergent-divergent nozzles at the temperature of 200–260ºC was accomplished. The article demonstrates that an atomized plume has a bimodal structure with a submicron fraction being dominated, which share is increased with temperature and achieved 80% at the convergent-divergent nozzle outlet at the water temperature of 260ºC. The measuring technique employing micro-tubes (optical guides) to minimize the diagnostic laser beam length, and reduce its absorption and multiple scattering intensity by mass of finely dispersed droplets was developed. Evaluations of droplets coagulation degree impact on the droplets share changing along the atomization plume length was estimated.

Keywords:

finely dispersed atomization, overheated metastable water

References

  1. Kuznetsova I.V., Gilmutdinov I.I., Gilmutdinov I.M., Sabirzyanov A.N. Poluchenie nanoform lidokaina metodom bystrogo rasshireniya sverkhkriticheskogo rastvora v vodnuyu sredu [Production of Lidocaine Nanoforms via the Rapid Extension of a Supercritical Solution into Water Medium] // Teplofizika vysokikh temperatur ‒ High Temperature, 2019, vol. 57, no. 5, pp. 726‒730. In Russ.
  2. Favorskii O.N., Alekseev V.B., Zalkind V.I., Zeigarnik Yu.A., Ivanov P.P., Marinichev D.V., Nizovskii V.L., Nizovskii L.V. Eksperimental'noe issledovanie kharakteristik gazoturbinnoy ustanovki TV3-117 pri vpryske peregretoy vody v compressor [Experimentally Studying TV3-117 Gas-Turbine Unit Characteristics at Superheated Water Injection into a Compressor] // Teploenergetika ‒ Thermal Engineering, 2014, vol. 61, no. 5, pp. 376‒384. In Russ.
  3. Pryanichnikov A.V., Roenko V.V., Bondarev E.B. Tushenie prolivov nefti i nefteproduktov metastabil'nymi parokapel'nymi struyami vody [Extinguishing Spills of Oil and Oil Products with Metastable Water Fog] // Pozhary i chrezvychaynye situatsii: predotvrashchenie, likvidatsiya ‒ Fire and emergencies: prevention, elimination, 2015, no. 4, pp. 7–12. In Russ.
  4. Dombrovsky L.A., Dembele S., Wen X.J. A Simplified Model for The Shielding of Fire Thermal Radiation by Water Mists // International Journal of Heat and Mass Transfer, 2016, vol. 96, pp. 199–209. https://doi.org/10.1016/j.ijheat-masstransfer.2016.01.028
  5. Alekseev V.B., Zalkind V.I., Zeigarnik Y.A., Marinichev D.V., Nizovskii V.L., Nizovskii L.V. Raspylenie peregretoy vody: praktika issledovaniya slozhnykh dispersionnykh struktur [Atomization of superheated water: practice of investigation of complicated disperse systems] // Teplofizika vysokikh temperatur High Temperature, 2014, vol. 52, no. 3, pp. 441–446. In Russ.
  6. Reshetnikov A.V., Roenko V.V., Majeyko N.A. Vzryvnoe vskipanie i polnyy razval strui peregretoy vody [Explosive Boiling and Complete Collapse of the Superheated Water Jet Thermal Processes in Engineering] // Teplovye protsessy v tekhnike Thermal processes in engineering, 2013, vol. 5, no. 7, pp. 295–302. In Russ.
  7. Lamanna G., Kamoun H., Weigand B., Steelant J. Towards a Unified Treatment of Fully Flashing Sprays // International Journal of Multiphase Flow, 2014, vol. 58, pp. 168–184. DOI: 10.1016/j.ijmultiphaseflow.2013.08.010
  8. Dombrovskii L.A., Zalkind V.I., Zeigarnik Yu.A., Marinichev D.V., Nizovskii V.L., Oksman A.A., Khodakov K.A. Raspylenie peregretoy vody: rezul'taty eksperimental'nykh issledovaniy [Atomization of Superheated Water: Results from Experimental Studies] // Teploenergetika Thermal Engineering, 2009, vol. 56, no. 3, pp. 191–200. In Russ.
  9. Alekseev V.B., Zalkind V.I., Zeigarnik Y.A., Marinichev D.V., Nizovskii V.L., Nizovskii L.V. O prirode bimodal'nogo raspredeleniya kapel' po razmeram pri raspyle peregretoy vody [On the Nature of Bimodal Drop Distribution over Sizes under Superheated Water Atomization] // Teplofizika vysokikh temperatur High Temperature, 2015, vol. 53, no. 2. pp. 221–224. In Russ.
  10. Dumouchel C., Yangyingsakthavorn P., Cousin J. Light Multiple Scattering Correction of Laser-Diffraction Spray Drop-Size Distribution Measurements // International Journal of Multiphase Flow, 2008, vol. 35, no. 3, pp. 277‒287. DOI: 10.1016/j.ijmultiphaseflow.2008.11.001
  11. Alipchenkov V.M., Zaichik L.I., Zeigarnik Y.A., et al. The Development of a Three-Fluid Model of Two-Phase Flow for Dispersed-Annular Mode of Flow in Channels: Deposition and Entrainment of Droplets // High Temperature, 2002, vol. 40, pp. 716–722. https://doi.org/10.1023/ A:1020488704284.
  12. Abramovich G.N. Prikladnaya gazovaya dinamika [Applied gas dynamics] Moscow: Nauka, 1969. 826 p. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI