Аuthors
Vasiliev L. L.1*,
Zhuravlyov A. S.1**,
Poddubko S. N.2***,
Belevich A. V.2***
1. A. V. Luikov Heat and Mass Transfer Institute of NAS of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus
2. United Institute of Mechanical Engineering, Minsk, 220072, Republic of Belarus
*e-mail: lvasil@hmti.ac.by
**e-mail: zhuravl@hmti.ac.by
***e-mail: bats@ncpmm.bas-net.by
Abstract
There are many electric transport means having a great number of components requiring intensive cooling. The article presents an overview of cooling methods, such as air-type, liquid-type, and employing phase-variable materials, and marks pros and cons of each of them. The problem of the excessive heat removal from heat generating electronic equipment may be solved successfully with two-phase heat transferring devices such as heat pipes and thermo-siphons. These devices are autonomous, noiseless, and their operation does not require energy consuming, which is utterly important for the wireless electric transport. Both heat pipes and thermo-siphons are able to absorb heat from the object being cooled, remove it outward the volume and then transfer it to the coolant or air. The article analyzes the options of heat pipes and thermo-siphons application for cooling and thermal control of the electric and hybrid transport components. It notes the two-phase passive heat transfer attractiveness for application in electric cars. Structures and specifics of the developed two-phase heat removing devices (vapor-dynamic thermo-siphon, ring thermo-siphons with cylindrical and flat evaporators, centrifugal heat pipe, etc.) are presented, and options of their application in thermal control systems for transportation means with electrical motor drive are proposed. The article regards the possibility of substantial intensification of transportation power electronics cooling by ring thermo-siphons of a new structure. It is possible to align the battery temperature, transferring the heat from its modules to the coolant system employing the heat pipes and thermo-siphons, and heat removal from rotor and stator of the electric motor is possible as well. An electric motor rotor can be cooled by the rotating centrifugal heat pipes, whereas the hear can be removed from the stator by the flat heat pipes, inserted between the electric winding layers. The cooling system with heat pipes is attractive due to its simplicity and reliable design, absence of moving parts, and the relatively low weight of the device.
Keywords:
electric transport, thermal control, cooling system, heat pipe, thermo-siphon
References
- Chan C.C., Cheng M. Vehicle Traction Motors. In: Encyclopedia of Sustainability Science and Technology, Ed. R.A. Meyers. NY: Springer New York, 2012. P. 11522. https://doi.org/10.1007/978-1-4419-0851-3_800.
- Krasnevsky L.G. Avtomaticheskie transmissii: analiz i perspektivy primeneniya na gibridnykh i batareynykh elektromobilyakh, Ch.1 [Automatic transmissions: analysis and prospects for use in hybrid and battery electric vehicles, Part 1] // Mekhanika mashin, mekhanizmov i materialov ‒ Mechanics of Machines, Mechanisms and Materials, 2020, vol. 51, no. 2, pp. 16‒29. In Russ.
- Huang J., Naini S.S., Miller R., Rizzo D., Sebeck K., Shurin S., Wagner J. A Hybrid Electric Vehicle Motor Cooling System – Design, Model, and Control // IEEE Transactions on Vehicular Technology, 2019, vol. 68, no. 5, pp. 4467‒4478. DOI: 10.1109/TVT.2019.2902135
- Singh K.V., Bansal H.O., Singh D. A Comprehensive Review on Hybrid Electric Vehicles: Architectures and Components // Journal of Modern Transportation, 2019, vol. 27, no. 4, pp. 77–107. DOI: 10.1007/s40534-019-0184-3
- Lei G., Zhu J., Guo Y., Liu C., Ma B. A Review of Design Optimization Methods for Electrical Machines // Energies, 2017, vol. 10, 1962. DOI: 10.3390/en10121962
- Gai Y., Kimiabeigi M., Chong Y.C., Widmer J.D., Deng X., Popescu M., Goss J., Staton D., Steven A. Cooling of Automotive Traction Motors: Schemes, Examples, and Computation Methods // IEEE Transactions on Industrial Electronics, 2019, vol. 66, no. 3, pp. 1681–1692. DOI: 10.1109/TIE.20182835397
- Singh R., Lapp G., Velardo J., Long P.T., Mochizuki M., Akbarzadeh A., Date A., Mausolf K., Busse K. Battery Cooling Options in Electric Vehicles with Heat Pipes // Frontiers in Heat and Mass Transfer, 2021, vol. 16, no. 2. DOI: 10.5098/hmt.16.2
- Vasiliev L.L., Rabetsky M.I., Grakovich L.P., Zhuravlyov A.S. Loop thermosyphon as one-turn annular pulsating heat pipe // International Journal of Research in Engineering and Science, 2019, vol. 7, iss. 2, ser. 1, pp. 19–32.
- Kuntanapreeda S. Traction Control of Electric Vehicles Using Sliding-mode Controller with Tractive Force Observer // International Journal of Vehicular Technology, 2014, article ID 829097. http://dx.doi.org/10.1155/2014/82909
- Tikadar A., Kumar N., Joshi Y., Kumar S. Coupled electro-thermal analysis of permanent magnet synchronous motor for electric vehicles // 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2020, July, pp. 249–256. DOI: 10.1109/ITherm45881.2020.9190562
- Yuan F.W., Yan Z., Sun Y., Tang Y. Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor // Applied Thermal Engineering, 2019, vol. 152, Febr., pp. 594–604. DOI: 10.1016/j.applthermaleng.2019.02.120
- Singh R., Mochizuki M., Saito Y., Yamada T., Nguyen T., Nguyen Ti. Heat pipes applications in cooling automotive electronics // Heat Pipe Science and Technology An International Journal, 2016, vol. 7, no. 1–2, pp. 57–59. DOI: 10.1615/HeatPipeScieTech.2016017225
- Kim J., Oh J., Lee H. Review on Battery Thermal Management System for Electric Vehicles // Applied Thermal Engineering, 2019, vol. 149, Febr., pp. 192–212. DOI:10.1016/j.applthermaleng.2018.12.020
- Vasiliev L., Zhuravlyov A., Grakovich L., Rabetsky M., Vassiliev L.Jr. Flat polymer loop thermosyphons // Archives of Thermodynamics, 2018, vol. 39, no. 1, pp. 75–90. DOI: 10.1515/aoter-2018-0004
- Vasiliev L.L. Heat Pipe in Modern Heat Exchangers // Applied Thermal Engineering, 2005, vol. 25, no. 1, pp. 1–19. DOI: 10.1016/j.applthermaleng.2003.12.004
- Vasiliev L.L., Konev S.V., Khrolenok V.V. Intensifikatsiya teploobmena v teplovykh trubakh [Intensification of
- heat exchange in heat pipes]. Minsk: Nauka i tekhnika, 1983. 151 p. In Russ.
- Vasiliev L.L., Bogdanov V.M. Reploperedaushchee ustroistvo [Heat transfer device] // Byulleten Izobreteniy. 1979. № 11. Pat. 653499. In Russ.
- Vasiliev L.L. Teploobmenniki na teplovyh trubah [Heat Pipe Heat Exchangers]. Minsk: Science and technology, 1981. 143 p. In Russ.
- Nollau A., Gerling D. A new cooling approach for traction motors in hybrid drives //2013 International Electric Machines & Drives Conference, pp. 456‒461. DOI: 10.1109/IEMDC.2013.6556136
- Nollau A., Gerling D. A flux barrier cooling for traction motors in hybrid drives // 2015 IEEE International Electric Machines & Drives Conference (IEMDC), pp. 1103–1108. DOI: 10.1109/IEMDC.2015.7409199
- Sun Y., Zhang S., Chen G., Tang Y., Liang F. Experimental and numerical investigation on a novel heat pipe based cooling strategy for permanent magnet synchronous motors // Applied Thermal Engineering, 2020, vol. 170, Jan., 114970. DOI: 10.1016/j.applthermaleng.2020. 114970
- Fang G., Yuan W., Yan Z., Sun Y., Tang Y. Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor // Applied Thermal Engineering, 2019, vol. 152, Febr., pp. 594–604. DOI: 10.1016/j.applthermaleng.2019.02.120
- Kanonchik L.E., Vasiliev L.L. Charge dynamics of the low-pressure adsorbed natural gas Accumulator, using solid adsorbents, vapordynamic thermosyphon and recirculation loop // International Journal of Heat and Mass Transfer, 2019, vol. 143, 118374.