Thermal conductivity anisotropy of additive metals obtained by selective laser alloying on the example of the CL 20ES stainless steel


Аuthors

Kiselev V. P.*, Ezhov A. D.**, Seliverstov S. D.***, Bykov L. V.****, Sotnik E. V.*****

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

*e-mail: vladimir-kiselev@yandex.ru
**e-mail: ezzhov@gmail.com
***e-mail: seliverstovsd@mai.ru
****e-mail: bykovlv@mai.ru
*****e-mail: es2103s@gmail.com

Abstract

Thus, for example, adaptive technologies application acquired wide proliferation due to technological manufacturing cycle curtailment and a possibility of obtaining a singular part of complex configuration. This trend rapid pace development allowed creating a substantial amount of techniques for the final product obtaining, which gives the possibility to produce promptly with high quality the parts of complex configuration in limited quantities.

Due to the fact that additive technologies are primarily the object layer-to-layer building-up and synthesis, the existing technological techniques diversity led to the mechanical properties anisotropy of additive materials, as well as dependence of these properties on production modes. In as much as the presence of the mechanical properties anisotropy is associated with material structure changing as the result of its manufacturing, the authors put forward the supposition, which was later substantiated experimentally, on the thermo-physical properties anisotropy presence of additive material obtained by the selective laser alloying technology.

The study of the difference presence in the thermo-physical properties of the additive material from the manufacturing technology was performed on an experimental setup allowing determine heat fluxes and temperatures in the given sections. The article presents the study of the four samples fabricated from the CL 20EC stainless steel powder by the selective laser technology on the thermal conductivity anisotropy presence. Two samples were with longitudinal orientation of alloying layers, and the rest with transverse orientation relative to the heat flow direction. The temperature values obtained while the experiment with the sampling increment of 0.25 s–1 were being smoothed for the random error reduction. Further, on achieving the stationary mode, average temperature value was being computed for each section with installed thermocouples. Thermal conductivity coefficient was being determined by the known heat flow value and samples geometry size.

The conducted study revealed that the value of the thermal conductivity coefficient of the CL 20ES additive steel in the direction parallel to the sintering planes was 25‒30% higher than in the perpendicular one. The noted difference in the properties of the material entails the need to account for the fact of the anisotropy of heat-conducting properties when designing structural elements manufactured employing the additive technology of selective laser melting.

Keywords:

metal-powder additive technologies, anisotropy, thermophysical properties, thermal conductivity

References

  1. Selyanskaya E.L., Kas'yanov S.V., Meluzova O.A. Vozmozhnost' primeneniya additivnykh tekhnologiy v tsentrobezhnykh kompressorakh [The possibility of using additive technologies in centrifugal compressors] // Materialy konferentsii «Aerokosmicheskaya tekhnika, vysokie tekhnologii i innovatsii» [Proceedings of the conference «Aerospace engineering, high technologies and innovations»], 2015, vol. 1, pp. 359‒363. In Russ.
  2. Rogalev A.N., Shevchenko M.I. Primenenie additivnykh lazernykh tekhnologiy pri proektirovanii okhlazhdaemykh lopatok gazovykh turbin [Additive laser technologies in cooled gas turbine blade design] // Vestnik of Ivanovo State Power Engineering University, 2016, vol. 3, pp. 34‒39. DOI: 10.17588/2072-2672.2016.3.034-039. In Russ.
  3. Magerramova L.A., Nozhnitsky Yu.A., Volkov S.A., Volkov M.E., Chepurnov V.Zh., Belov S.V., Verbanov I.S., Zaikin S.V. Perspektivy primeneniya additivnykh tekhnologiy dlya sozdaniya detaley i uzlov aviatsionnykh gazoturbinnykh dvigateley i pryamotochnykh vozdushno-reaktivnykh dvigateley [Prospects Of Application Of Additive Technologies To Develop Parts And Components Of Gas Turbine Engines And Ramjets] // Vestnik of Samara University. Aerospace and Mechanical Engineering, 2019, vol. 18, iss. 3, pp. 81‒98. In Russ.
  4. Slavutin L.V., Bashkarev A.Ya. Tekhnologiya vosstanovleniya detaley mashin s primeneniem additivnykh tekhnologiy [Technology for restoring machine parts using additive technologies] // Sbornik trudov konferentsii «Nedelya nauki SPbPU» [Proceedings of the conference «SPbPU Science Week»], 2018, pp. 118‒122. In Russ.
  5. ASTM F2792-12a Standard Terminology for Additive Manufacturing Technologies (Withdrawn 2015), ASTM International, West Conshohocken, PA, 2012, www.astm.org
  6. Smelov V.G., Sotov A.V., Agapovichev A.V. Issledovanie struktury i mekhanicheskikh svoystv izdeliy, poluchennykh metodom selektivnogo lazernogo splavleniya iz poroshka stali 316L [Investigation of the structure and mechanical properties of products obtained by selective laser fusion
  7. from 316L steel powder] // Chernye metally Ferrous metallurgy, 2016, vol. 9, pp. 61‒65. In Russ.
  8. Sukhov D.I., Bazyleva O.A., Nerush S.V., Arginbaeva E.G., Zaytsev D.V. Osobennosti struktury i svoystv materiala zharoprochnogo intermetallidnogo nikelevogo splava, poluchennogo metodom selektivnogo lazernogo splavleniya [Features of the structure and properties of the material of a heat-resistant intermetallic nickel alloy obtained by selective laser fusion] // Sbornik trudov konferentsii «Additivnye tekhnologii: nastoyashchee i budushchee» [Proceedings of the conference «Additive Technologies: present and future»], 2018, pp. 321‒325. In Russ.
  9. Evgenov A.G., Rogalev A.M., Karachevtsev F.N., Mazalov I.S. Vliyanie goryachego izostaticheskogo pressovaniya i termicheskoy obrabotki na svoystva splava ep648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [The effect of hot isostatic pressing and heat treatment on the properties of the EP648 alloy synthesized by selective laser fusion] // Tekhnologiya mashinostroeniya Mechanical engineering technology, 2015, no. 9, pp. 11‒16. In Russ.
  10. Nikolaev I.A., Lesnevskiy L.N., Kozhevnikov G.D., Seliverstov S.D. Issledovanie vliyaniya napravleniya vyrashchivaniya obraztsov iz stali 12Kh18N10T, poluchennykh metodom selektivnogo lazernogo splavleniya (SLM), na fretting-iznos v usloviyakh polnogo i chastichnogo proskal'zyvaniya [Investigation of the influence of the growing direction of 12X18H10T steel samples obtained by selective laser fusion (SLM) on fretting wear under conditions of complete and partial slippage] // Tezisy XIX Mezhdunarodnoy konferentsii «Aviatsiya i kosmonavtika» [Proceedings of the XIX International Conference «Aviation and Cosmonautics»], 2020, pp. 177‒178. In Russ.
  11. Sukhov D.I., Mazalov P.B., Nerush S.V., Khodyrev N.A. Vliyanie parametrov selektivnogo lazernogo splavleniya na obrazovanie poristosti v sintezirovannom materiale korrozionnostoykoy stali [Influence of the parameters of selective laser fusion on the formation of porosity in the synthesized material of corrosion-resistant steel] // Proceedings of All-Russian Research Institute of Aviation Materials, 2017, no. 8 (56), pp. 34–44. DOI: 10.18577/2307-6046-2017-0-8-4-4. In Russ.
  12. Khoroshko E., Filippov A., Shamarin N., Moskvichev E., Utyaganova V., Tarasov S., Savchenko N., Kolubaev E., Rubtsov V., Lychagin D. Structure and Mechanical Properties of Cu–Al–Si–Mn System-Based Copper Alloy Obtained by Additive Manufacturing // Russian Physics Journal, 2021, vol. 64. DOI: 10.1007/s11182-021-02333-2
  13. Evgenov A.G., Gorbovets M.A., Prager S.M. Struktura i mekhanicheskie svoystva zharoprochnykh splavov VZh159 i EP648, poluchennykh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of heat-resistant alloys VJ159 and EP648 obtained by selective laser fusion] // Aviatsionnye materialy i tekhnologii Aviation materials and technologies, 2016, no. S1, pp. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15. In Russ.
  14. Martynyuk L.A., Bykov L.V., Ezhov A.D., Talalaeva P.I., Afanasiev D.V. Experience in using anisotropic properties of composites in engineering the compressor impeller of a small-size gas turbine engine // ICMTMTE 2020 Proceedings. DOI: 10.1051/matecconf/202032903029
  15. Sotov A.V., Pronichev N.D., Smelov V.G., Bogdanovich V.I., Giorbelidze M.G., Agapovichev A.V. Razrabotka metodiki proektirovaniya tekhnologicheskikh protsessov izgotovleniya detaley GTD metodom selektivnogo lazernogo splavleniya poroshka zharoprochnogo splava
  16. VV751P [Development Algorithm Of The Technological Process of Manufacturing Gas Turbine Parts By Selective Laser Melting] // Academic Journal «Izvestia of Samara Scientific Center of the Russian Academy of Sciences», 2017, vol. 19, no. 4, pp. 96‒104. In Russ.
  17. Khoroshko E.S., Filippov A.V., Shamarin N.N. Anizotropiya mekhanicheskikh svoystv alyuminievoy bronzy, poluchennoy metodom elektronno-luchevogo additivnogo proizvodstva [Anisotropy of mechanical properties of aluminum bronze obtained by electron beam additive manufacturing] // Proceedings of International Conference «Physical Mesomechanics. Materials with a multilevel hierarchically organized structure and intelligent production technologies», 2020, p. 523. DOI: 10.17223/97859462192 42/324. In Russ.
  18. Grigor'yev V.A., Zorin V.M. Teoreticheskie osnovy teplotekhniki. Teplotekhnicheskiy eksperiment [Theoretical foundations of heat engineering. Thermal engineering experiment.]. Moscow: Energoatomizdat, 1988. 560 p. In Russ.
  19. GOST R 57558-2017. Additivnye tekhnologicheskie protsessy. Bazovye printsipy. Chast' 1. Terminy i opredele-niya [Additive technological processes. Basic principles. Part 1. Terms and definitions]. Moscow: Standartinform, 2018. 16 p. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI