Experimental study of temperature impact on liquid hydrocarbon jets propagation


Аuthors

Weiss T. S.1*, Garyaev A. B.1, Weiss L. 2

1. National Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya str., Moscow, 111250 Russia
2. Friedrich-Alexander University, Am Weichselgarten 8, Erlangen 91058, Germany

*e-mail: ZuevaTS-1993@yandex.ru

Abstract

Mixture-formation process optimization in the combustion chamber of automobile engines, which is being drastically affected by the fuel temperature, is important for the CO2 emission reduction of the automobile transport. The presented work deals with experimental study of the temperature impact on the liquid hydrocarbon jets propagation. The experiment was being conducted both without and with the air cross-flow of 5—50 m/s velocity. The hydrocarbons under study were isooctane and ethanol. The direct Shadowgraph and Schlieren methods were employed for the jets propagation visual pattern obtaining. Hydrocarbons heating was of 25—98°C, and injection pressure of 100 and 170 bar. The temperature impact on the expansion angle, range, amount of vapor phase, and trajectory of jet deflection in the cross flow was studied. It was revealed that with temperature growth from 25°C to 98°C the expansion angle doubled in average, the range decreases by 25—27%, and the area of the vapor phase projection area increased by 8.1% for isooctane and by 11.4% for ethanol. It was found that under the cross flow impact ethanol jets deflected much more that the isooctane jets, which might be associated with a more intense evaporation of the isooctane droplets, compared to the ethanol droplets. Three possible mechanisms of the temperature impact on the jets propagation were revealed. They are velocity coefficient changing in the nozzle, droplets size changing and their breakup at the nozzle outlet, as well as the droplets evaporation rate changing, which is the most probable mechanism of the temperature impact on the jets propagation.

Keywords:

liquid spray, hydrocarbons, crossflow, influence of the temperature on the spray propagation, Shadowgraph, Schlieren method

References

  1. IEA (2020), Tracking Transport 2020, IEA, Paris https://www.iea.org/reports/tracking-transport-2020
  2. Abramovich G.N. Teoriya turbulentnyh struj (Theory of turbulent jets). Moscow, ECOLIT, 1960. 720 p. In Russ.
  3. Miguel R. Panao, Antonio L.N. Moreira. Visualization and Analysis of Spray Impingement Under Cross-Flow Conditions. SAE Technical Paper, 2002-01-2664. DOI: https://doi.org/10.4271/2002-01-2664
  4. Si Z., Ashida Y., Shimasaki N., Nishida K., Ogata Y. Effect of cross-flow on spray structure, droplet diameter and velocity of impinging spray. Fuel, 2018, vol. 234, pp. 592‒603. DOI: https://doi.org/10.1016/j.fuel.2018.07.061
  5. Si Z., Shimasaki N., Nishida K., Ogata Y., Guo M., Tang C., Huang Z. Experimental study on impingement spray and near-field spray characteristics under high-pressure cross-flow conditions. Fuel, 2018, vol. 218, pp. 12‒22. DOI: https://doi.org/10.1016/j.fuel.2018.01.011
  6. Welss R., Bornschlegel S., Wensing M. Characterizing Spray Propagation of GDI Injectors under Crossflow Conditions. SAE Technical Paper, 2018-01-1696. DOI: https://doi.org/10.4271/2018-01-1696
  7. Guo M., Shimasaki N., Nishida K., Ogata Y., Wada Y. Experimental study on fuel spray characteristics under atmospheric and pressurized cross-flow conditions. Fuel, 2016, vol. 184, pp. 846‒855. DOI: https://doi.org/10.1016/ j.fuel.2016.07.083
  8. Guo M., Nishida K., Ogata Y., Wu C., Fan Q. Experimental study on fuel spray characteristics under atmospheric and pressurized cross-flow conditions, second report: Spray distortion, spray area, and spray volume. Fuel, 2017, vol. 206, pp. 401–408. DOI: https://doi.org/10.1016/j.fuel.2017.05.088
  9. Dolgushina O.V., Platonov N.I., Belousov V.S., Dolgushin D.M. Dinamika kapel’ dispergirovannoj strui v poperechnom potoke gaza. Vestnik Chelyabinskogo gosudarstvennogo universiteta. 2012, no. 30 (284), pp. 26‒31. In Russ.
  10. Sreznevskij B.I. Ob isparenii zhidkostej. ZHZFCHO, 1882, vol. 14, no. 8, pp. 420–442. In Russ.
  11. Terekhov V.I., Pahomov M.A. Teplomassoperenos i gidrodinamika v gazokapel’nyh potokah (Heat and mass transfer and hydrodynamics in dispersed flows). NGTU, 2008. 284 p. In Russ.
  12. Volkov R.S., Kuznecov G.V., Strizhak P.A. Eksperimental’naya ocenka vliyaniya processa ispareniya kapel’ vody na usloviya ih peremeshcheniya vo vstrechnom potoke vysokotemperaturnyh gazov. Teplofizika vysokih temperatur, 2016, vol. 54, no. 4, pp. 584–589. In Russ.
  13. Antonov D. V., Volkov R.S., Zhdanova A.O., Kuznecov G.V., Strizhak P.A. Vliyanie temperatury gazov na harakteristiki deformacii dvizhushchihsya kapel’ vody. Inzhenerno-fizicheskij zhurnal, 2015, vol. 88, no. 4. pp. 773–781. In Russ.
  14. Kuznecov G.V., Strizhak P.A. Teplofizika vysokih temperatur, 2014, vol. 52, no. 4. pp. 597–604. In Russ.
  15. Lui Y., Pei Y., Peng Z., Qin J., Zhang Y,. Ren Y., Zhang M. Spray development and droplet characteristics of high temperature single-hole gasoline spray. Fuel, 2017, vol. 191, pp. 97‒105. DOI: https://doi.org/10.1016/j.fuel.2016.11.068
  16. Settles G.S. Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. Berlin Heidelberg: Springer-Verlag, 2001, ch. 6, pp. 143‒163. 376 p.
  17. Vasil’ev L. A. Tenevye metody [Shadow methods]. Moscow: Nauka, 1968. 400 p. In Russ.
  18. Zueva T.S., Weiss L., Wensing M., Garyaev A.B. Experimental investigation of spray propagation under crossflow conditions with Shadowgraph and Schlieren techniques. Journal of Physics: Conference Series, 2020, vol. 1683. pp. 1–8. DOI: https://doi.org/10.1088/1742-6596/1683/2/022061
  19. Novickij P.V., Zograf I.A. Ocenka pogreshnostej izmerenij (Estimation of measurement errors). Leningrad, Energoatomizdat, 1991. 304 p. In Russ.
  20. Mamaikin, D., Knorsch, T., Rogler, P., Wensing, M. Experimental investigation of flow field and string cavitation inside a transparent real-size GDI nozzle. Exp. Fluids, 61, 154 (2020). DOI: https://doi.org/10.1007/s00348-020-02982-y
  21. Bornschledel S., Conrad C., Durst A., Wang J., Wensing M. Multi-hole gasoline direct injection: In-nozzle flow and primary breakeup investigated in transparent nozzles and with X-ray. International Journal of Engine Research, 2017, vol. 19, iss. 1, pp. 67‒77. DOI: https://doi.org/10.1177/ 1468087417746860
  22. Al’tshul’ A.D., Kiselyov P.G. Gidravlika i Aerodinamika (Hydraulics and Aerodynamics). Moscow, Strojizdat, 1975, 323 p. In Russ.
  23. Labuncov D.A., Yagov V.V. Mekhanika dvuhfaznyh system (Mechanics of two-phase systems). Moscow, Izdatel’skij dom MEI, 2016. 384 p. In Russ.
  24. Volkov A.V. Raschet ispareniya i dinamiki dvizhushchihsya kapel’ topliva. Mezhdunarodnyj nauchnyj zhurnal molodoj uchyonyj, 2018, no. 51(237), pp. 19‒30. In Russ.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI