Heat removal intensification while cylinder filling with gaseous hydrogen


Аuthors

Zarubin V. S.1*, Zarubin S. V.1**, Osadchiy Y. G.2***

1. Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia
2. ZAO NPP “MASHTEST”, Korolev, Moscow region, 141070, Russia

*e-mail: zarubin@bmstu.ru
**e-mail: sevlzaru@mail.ru
***e-mail: mashtest@mashtest.ru

Abstract

The purpose of this work consists in justifying the possibility of cooling the hydrogen entering the cylinder while refueling directly in the cylinder itself by installing a coil with cooling water in it. A mathematical model of the thermal mode of a metal-composite cylinder with a coil was developed with account for thermodynamic characteristics of hydrogen as a real gas. The presented quantitative analysis of this model as applied to a ball-shaped metal-composite hydrogen cylinder confirms the possibility of achieving a hydrogen density in the cylinder close to the regulated value of 40 kg/m at a pressure of 70 MPa with a limited filling time. Besides, with the a heat sink directly in the refueling cylinder, there is no need for hydrogen pre-cooling at the filling station, and in the presence of a rather complex system for the hydrogen pressure regulating in the dispenser of the filling column.

Keywords:

metal-composite cylinder filling with hydrogen, hydrogen cooling in a cylinder with a coil, mathematical model of the cylinder thermal mode

References

  1. Kozlov S.I., Fateev V.N. Vodorodnaya energetika: sovremennoe sostoyanie, problemy, perspektivy [Hydrogen energy: current state, problems, prospects]. Moscow: Gazprom VNIIGAZ, 2009. 520 p. In Russ.

  2. Todorovic R. Hydrogen Storage Technologies for Transportation Application // Journal of Undergraduate Research, 2015, vol. 5, no. 1, pp. 56–59. DOI:10.5210/jur. v8i1.7541

  3. Bagotsky V.S. Toplivnye elementy: problemy i resheniya [Fuel Cells: Problems and Solutions]. Hoboken: Wiley, 2009. 320 p. In Russ.

  4. Hua T.Q., Ahluwalia R.K., Peng J-K, Kromer M., Lasher S., McKenney K., Law K., Sinha J. Technical assessment of compressed hydrogen storage tank systems for automotive applications. Argonne National Laboratory, 2010. 79 p.

  5. Lupachev D.A., Smirnov M.I. Khranenie vodoroda (poluchenie i khranenie) [Storage of hydrogen (production and storage)] // Nauka, tekhnika, obrazovanie ‒ Science, technology, education, 2018, no. 5, pp. 7377. In Russ.

  6. Fateev V.N., Alekseeva O.K., Korobtsev S.V., Seregina E.A., Fateeva T.V., Grigoriev A.S., Aliev A.S. Problemy akkumulirovaniya i khraneniya vodoroda [Problems of accumulation and storage of hydrogen] // Kimya Problemleri ‒ Chemical Problems, 2018, vol. 16, no. 4, pp. 453–483. DOI: 10.32737/2221-8688-2018-4-453-483. In Russ.

  7. Bocharnikov M.S., Yanenko Yu.B., Tarasov B.P. Metallogidridnyy termosorbtsionnyy kompressor vodoroda vysokogo davleniya [Metal hydride thermosorption compressor of hydrogen high pressure] // Mezhdunarodnyy Nauchnyy Zhurnal Al'ternativnaya Energetika i Ekologiya ‒ International Scientific Journal for Alternative Energy and Ecology, 2012, no. 12, pp. 1823. In Russ.

  8. Autonomous mode: on a hydrogen Toyota Mirai in Vladivostok – URL: https://www.drom.ru/info/test-drive/toyota-mirai-73223/. Accessed 15.06.2021.

  9. The Toyota Mirai serial hydrogen car has retained the appearance of the concept – URL: https://www.drive.ru/news/toyota/5e32da6fec05c4cd07000066/. Accessed 15.06.2021.

  10. Woodfield P.L., Monde M., Takano T. Heat transfer characteristics for practical hydrogen pressure vessels being filled at high pressure // Journal of Thermal Science and Technology, 2008, vol. 3, no. 2, pp. 241–253. DOI:10.1299/ jtst.3.241

  11. Galassi M.C., Papanikolaou E., Heitsch M., Baraldi D., Iborra B.A., Moretto P. Validation of CFD models for

  12. hydrogen fast filling simulations // International Journal Hydrogen Energy, 2014, vol. 39, no. 11, pp. 65–2660.

  13. Belousova S.Yu., Zarubin V.S., Osadchiy Ya.G. Chislennoe modelirovanie teplovogo sostoyaniya metallokompozitnogo avtomobil'nogo ballona pri zapolnenii metanom [Numerical Modeling of the Car's Metal-Cylinder Thermal State when Filling Methane] // Transport na al'ternativnom toplive Alternative Fuel Transport, 2015, no. 3 (45), pp. 15–24. In Russ.

  14. Hamburg D.Yu., Semenov V.P., Dubovkin N.F., Smirnova L.N. Vodorod. Svoystva, poluchenie, khranenie, transportirovanie, primenenie: Sprav. izd. [Hydrogen. Properties, preparation, storage, transportation, application: Reference edition]. Moscow: Khimiya, 1989. 672 p. In Russ.

  15. Malkov M.P., Danilov I.B., Zeldovich A.G., Fradkov A.V. Spravochnik po fiziko-tekhnicheskim osnovam kriogeniki [Handbook of physical and technical fundamentals of cryogenics]. Moscow: Energoatomizdat, 1985. 432 p. In Russ.

  16. Jacobsen R.T, Leachman J.W., Penoncello S.G., Lemmon E.W. Current Status of Thermodynamic Properties of Hydrogen // International Journal of Thermophysics, 2007, vol. 28, pp. 758–772. DOI: 10.1007/s10765-007-0226-7

  17. Leachman J.W., Jacobsen R.T, Penoncello S.G., Lemmon E.W. Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen // Journal of Physical and Chemical Reference Data, 2009, vol. 38, no. 3, pp. 721–748.

  18. Dicken C.J.B., Merida W. Modeling the Transient Temperature Distribution within a Hydrogen Cylinder During Refueling (at Numerical Heat Transfer, Taylor and Francis Group, 2008, Part A, 53, pp. 1–24).

  19. Kirillin V.A., Sychev V.V., Sheindlin A.E. Tekhnicheskaya termodinamika [Engineering thermodynamics]. Moscow: MPEI Publishing house, 2016. 496 p. In Russ.

  20. Zarubin V.S., Osadchiy Ya.G. Chislennoe modelirovanie teplovogo rezhima metallokompozitnogo ballona pri zapolnenii vodorodom [Numerical Modeling of the Thermal State of the Metal-Cylinder Carin Spending Methane] // Transport na al'ternativnom toplive ‒ Alternative Fuel Transport, 2021, no. 2 (80), pp. 54‒62. In Russ.

  21. Simonovski I., Baraldi D., Melideo D., Acosta-Iborra B. Thermal simulations of a hydrogen storage tank during fast filling // International Journal of Hydrogen Energy, 2015, vol. 40, pp. 12560–12571. DOI:10.1016/j.ijhydene. 2015.06.114

  22. Bourgeois T., Brachmann T., Barth F., Ammouri F., Baraldi D., Melide D., Acosta-Iborra B., Zaepffel D.,

  23. Saury D., Lemonnier D. Optimization of hydrogen vehicle refueling requirements // International Journal of Hydrogen Energy, 2017, vol. 42, pp. 13789–13809. DOI:10.1016/

  24. Leontiev A.I. Teoriya teplomassoobmena [Theory of heat and mass transfer]. Moscow: Publishing House of the Bauman Moscow State Technical University, 2018. 462 p. In Russ.

  25. National Standard of the Russian Federation GOST 53258-2009. Moscow: Standartinform, 2009. 11 p.

  26. Central Metal Portal of the Russian Federation. URL: http://metallicheckiy-portal.ru/alu/AMg6 Accessed 15.06.2021.

  27. Patent RU 2707781 C1 (Published: 29.11.2019 Byul. No. 34) Hybrid composite material for high-pressure shell structures.

  28. Komkov M.A., Tarasov V.A. Tekhnologiya namotki kompozitnykh konstruktsiy raket i sredstv porazheniya [Technology of winding composite structures of missiles and weapons of destruction]. Moscow: Publishing House of the Bauman Moscow State Technical University, 2015. 432 p. In Russ.

  29. Kutateladze S.S., Borishansky V.M. Spravochnik po teploperedache [Handbook of heat transfer]. Moscow‒Leningrad: Gosenergoizdat, 1958. 414 p. In Russ.

  30. Makhutov N.A., Gadenin M.M. Kompleksnaya otsenka prochnosti, resursa, zhivuchesti i bezopasnosti mashin v slozhnykh usloviyakh nagruzheniya [Integrated assessment of the durability, resources, survivability, and safety of machinery loaded under complex conditions] // Problemy mashinostroeniya i nadezhnosti mashin Journal of machinery manufacture and reliability, 2020, no. 4, pp. 24‒34. In Russ.

  31.  

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI