Mathematical modeling of brake disks temperature state


Аuthors

Attetkov A. V.*, Volkov S. S., Kotovich A. V., Stankevich I. V., Tolmachev V. I.

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: fn2@bmstu.ru

Abstract

The purpose of the work being presented consists in the temperature state numerical analysis of brake discs staying under the impact of frictional heat generation linearly decreasing in time. A numerical solution of the initial boundary value problem of thermal conductivity for thebrake assembly consisting of the cast iron disk, and ring friction pad from retinax, mounted on the motionless steel basis, was developed by dint of the finite element technology. Thermal contact occurs during in a finite time between the rotating brake disc and the annular friction pad, while convection heat exchange with the environment is being realized on the outer surfaces. The impact of friction coefficient, the friction pair pressure, angular speed and braking time on the total temperature level of the brake assembly structural elements was studied. The article shows that the temperature growth in characteristic points on the friction surface is linearly associated with the average friction coefficient growth, the friction pair pressing pressure, and angular rotation speed. The authors established that with the braking time increase temperature drops along the brake disk width reduced, but radial temperature gradients herewith drastically increased. The obtained results indicate that the stress-strain analysis should necessarily follow the temperature state determining of the brake systems for comprehensive assessment of their operability.

Keywords:

friction, temperature, temperature problem, braking, frictional heat generation

References

  1. Kragel’skii I.V., Dobychin M.N., Kombalov V.S. Osnovy raschetov na trenie i iznos (Fundamentals of calculations for friction and wear). Moscow, Mashinostroenie, 1977. 526 p.
  2. Chichinadze A.V., Braun E.D., Bushe N.A. Osnovy tribologii (trenie, iznos, smazka) (Fundamentals of tribology (friction, wear, lubrication)), in Chichinadze A.V. (ed.). Moscow, Mashinostroenie, 2001. 664 р.
  3. Korovchinskii M.V. Osnovy teorii termicheskogo kontakta pri lokal’nom trenii. Voprosy treniya i problemy smazki: Sbornik statei. Moscow, Nauka, 1968, pp. 5–72.
  4. Evtushenko A.A., Ivanik E.G. Termonapryazhennoe sostoyanie na lokal’nom termicheskom kontakte pri trenii vercheniya. Inzhenerno-fizicheskii zhurnal, 1996, vol. 69, no. 1, pp. 72–78.
  5. Attetkov A.V., Volkov I.K., Tverskaya E.S. Temperaturnoe pole izotropnogo poluprostranstva, podverzhennogo lokal’nomu friktsionnomu nagrevu v rezhime treniya vercheniya. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie, 2006, no. 2, pp. 35–44.
  6. Attetkov A.V., Volkov I.K., Tverskaya E.S. Optimal’naya tolshchina okhlazhdaemoi stenki, podverzhennoi lokal’nomu friktsionnomu nagrevu v rezhime treniya vercheniya. Inzhenerno-fizicheskii zhurnal, 2007. vol. 80, no. 2, pp. 9–14.
  7. Adamowicz A., Grzes P. Analysis of disc brake temperature distribution during single braking under non-axisymmetric load. Applied Thermal Engineering, 2011, no. 6–7, pp. 1003–1012.
  8. Yevtushenko A.A., Grzes P. Axisymmetric FEA of temperature in a pad/disc brake system at temperature-dependent coefficients of friction and wear. Int. Commun. Heat Mass, 2012, no. 8, pp. 1045–1053.
  9. Belhocine A., Abu Bakar A.R., Bouchetara M. Numerical Modeling of Disc Brake System in Frictional Contact. Tribology in Industry, 2014, no. 1, pp. 49–66.
  10. Balakin V.A., Lysenok Yu.V. Teplovydelenie i teploperenos v zone friktsionnogo kontakta. Vestnik GGTU im. P.O. Sukhogo, 2001, no.1, pp. 3–7.
  11. Zarubin V.S., Stankevich I.V. Raschet teplonapryazhennykh konstruktsii (Calculation of heat-stressed structures). Moscow, Mashinostroenie, 2005. 352 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI