Аuthors
Semenov D. S.1*,
Nenarokomov A. V.2**,
Kudryavtsev N. D.3***
1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. ,
3. Practical and Clinical Research Center of Diagnostics and Telemedical Technologies, Department of Healthcare of Moscow, Moscow, 127051, Russia
*e-mail: semenov_ds@icloud.com
**e-mail: nenarokomovav@mai.ru
***e-mail: n.kudryavtsev@npcmr.ru
Abstract
Body temperature is one of the most frequent characteristics of a patient’s health status. The history of the thermometry application in medicine begins more than two thousand years ago. The applied technical and methodological solutions herewith were constantly evolving. The purpose of this work consisted in revealing the areas of technology that require modernization. To this end, the analysis of literature reviews in the field of medicine devoted to temperature measuring and published over the past ten years was performed. For each method presented in the literature, a brief description was formulated and the key characteristics, advantages, and disadvantages of its application in practice were highlighted. Passive methods employed in medicine include application of liquid thermometers, thermocouples, zero heat flux and fiber optic sensors, thermistors and measurements of radiation in the infrared and near-infrared range. Active methods are based on microwave, ultrasonic and acoustic thermometry. Besides, indirect temperature measurement is being performed by computed tomography and magnetic resonance imaging. Thus, we are facing a whole range of technical solutions aimed at the temperature measuring of the patient’s tissues. They differ in accuracy, resolution, need for direct contact, negative health effects, and cost. The most commonly used are the surface temperature measurements for the comprehensive assessment of a patient’s condition or diagnosis of a specific disease. Frequently employed thermotherapy methods (such as ultrasonic or laser hyperthermia and thermal ablation) also require monitoring of the temperature field of both the object and nearby tissues. As the result, a significant number of technical solutions is presented in this area as well. The pros and contras analysis of all methods revealed that the stumbling block in the issue of thermometry was the balance between the temperature measurement accuracy and the resolution of the method. The effectiveness herewith of a particular solution employing largely depends on the applied technique. Thus, an inference can be drawn that the industry needs the development of easy-to-use and reasonably accurate non-invasive thermometry methods.
Keywords:
thermometry methods, medicine, review, measurement accuracy, practical application
References
- Wright W.F. Early evolution of the thermometer and application to clinical medicine. J. Therm. Biol., 2016, vol. 56, pp. 18–30. DOI: 10.1016/j.jtherbio.2015.12.003
- Braid A. MacRae, Simon Annaheim, Christina M. Spengler, René M. Rossi. Skin temperature measurement using contact thermometry: A systematic review of setup variables and their effects on measured values. Front. Physiol, 2018, vol. 9, no. JAN, pp. 1–24. DOI: 10.3389/fphys.2018.00029
- Childs C. Body temperature and clinical thermometry. Handbook of Clinical Neurology, 1st ed., 2018, vol. 157, pp. 467–482. DOI: 10.1016/B978-0-444-64074-1.00029-X
- Valentina Pecoraro, Davide Petri, Giorgio Costantino, Alessandro Squizzato, Lorenzo Moja, Gianni Virgili, Ersilia Lucenteforte. The diagnostic accuracy of digital, infrared and mercury-in-glass thermometers in measuring body temperature: a systematic review and network meta-analysis. Intern. Emerg. Med., 2021, vol. 16, no. 4, pp. 1071–1083. DOI: 10.1007/s11739-020-02556-0
- Van Rhoon G.C. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring? Int. J. Hyperth., 2016, vol. 32, no. 1, pp. 50–62. DOI: 10.3109/02656736.2015.1114153
- Robert J. Myerson, Eduardo G. Moros, Chris J. Diederich, Dieter Haemmerich, Mark D. Hurwitz, I.-C. Joe Hsu, Robert J. McGough, William H. Nau, William L. Straube, Paul F. Turner, Zeljko Vujaskovic, Paul R. Components of a hyperthermia clinic: Recommendations for staffing, equipment, and treatment monitoring. Int. J. Hyperth., 2014, vol. 30, no. 1, pp. 1–5. DOI: 10.3109/02656736.2013.861520
- Gerben Schooneveldt, Akke Bakker, Edmond Balidemaj, Rajiv Chopra, Johannes Crezee, Elisabeth D. Geijsen, Josefin Hartmann, Maarten C.C.M. Hulshof, H. Petra Kok, Margarethus M. Paulides, Alejandro Sousa-Escandon, Paul R. Stauffer, Paolo F. Maccarini. Thermal dosimetry for bladder hyperthermia treatment. An overview. Int. J. Hyperth., 2016, vol. 32, no. 4, pp. 417–433. DOI: 10.3109/02656736.2016.1156170
- Lewis M.A., Staruch R.M., Chopra R. Thermometry and ablation monitoring with ultrasound. Int. J. Hyperthermia, 2015, vol. 6736, no. 2, pp. 163–181. DOI: 10.3109/0265 6736.2015.1009180
- Sessler D.I. Perioperative Temperature Monitoring. Anesthesiology, 2020, no. 1, pp. 111–118. DOI: 10.1097/ALN.00 00000000003481
- Ode K., Selvaraj S., Smith A.F. Monitoring regional blockade. Anaesthesia, 2017, vol. 72, pp. 70–75. DOI: 10.1111/anae.13742
- Giacomo Strapazzon, Emily Procter, Peter Paal, Hermann Brugger. Pre-hospital core temperature measurement in accidental and therapeutic hypothermia. High Alt. Med. Biol., 2014, vol. 15, no. 2, pp. 104–111. DOI: 10.1089/ham.2014.1008
- Wui Keat Yeoh, Jason Kai Wei Lee, Hsueh Yee Lim, Chee Wee Gan, Wenyu Liang, Kok Kiong Tan. Revisiting the tympanic membrane vicinity as core body temperature measurement site. PLoS One., 2017, vol. 12, no. 4, pp. 1–21. DOI: 10.1371/journal.pone.0174120
- Mahbub M.H., Harada N. Review of different quantification methods for the diagnosis of digital vascular abnormalities in hand-arm vibration syndrome, J. Occup. Health., 2011, vol. 53, no. 4, pp. 241–249.
- Senay Tewolde, Kalarickal Oommen, Donald Y.C. Lie, Yuanlin Zhang, Ming-Chien Chyu. Epileptic seizure detection and prediction based on continuous cerebral blood flow monitoring — A review. J. Healthc. Eng., 2015, vol. 6, no. 2, pp. 159–178.
- Tagieva N.R., Shakhnovich R.M., Veselova T.N. Noninvasive methods of detection of vulnerable atherosclerotic plaques in coronary arteries. Kardiologiya, 2014, no. 11, pp. 46–56.
- Hasselberg M.J., McMahon J., Parker K. The validity, reliability, and utility of the iButton® for measurement of body temperature circadian rhythms in sleep/wake research. Sleep Med, 2013, vol. 14, no. 1, pp. 5–11. DOI: 10.1016/j. sleep.2010.12.011
- Roriz P., Silva S., Frazao O., Novais S. Optical fiber temperature sensors and their biomedical applications. Sensors, 2020, vol. 20, no. 7.
- Salas N., Castle S.M., Leveillee R.J. Radiofrequency ablation for treatment of renal tumors: Technological principles and outcomes. Expert Rev. Med Devices, 2011, vol. 8, no. 6. pp. 695–707. DOI: 10.1586/ERD.11.51
- Kokuryo D., Kumamoto E., Kuroda K. Recent technological advancements in thermometry. Adv. Drug Deliv Rev, 2020, vol. 163–164, pp. 19–39. DOI: 10.1016/j.addr.2020.11.001
- Lohman R.F. , Ozturk C.N.. Ozturn C., Jayprakash V., Djohan R. An analysis of current techniques used for intraoperative flap evaluation. Ann. Plast. Surg, 2015, vol. 75, no. 6, pp. 679–685. DOI: 10.1097/SAP.0000000000000235
- Schnelldorfer T. Image-enhanced laparoscopy: A promising technology for detection of peritoneal micrometastases. Surgery. Mosby, Inc., 2012, vol. 151, no. 3, pp. 345–350. DOI: 10.1016/j.surg.2011.12.012
- Childs C., Soltani H. Abdominal cutaneous thermography and perfusion mapping after caesarean section: A scoping review. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 22, pp. 1–22. DOI: 10.3390/ijerph17228693
- Bharara M., Schoess J., Armstrong D.G. Coming events cast their shadows before: detecting inflammation in the acute diabetic foot and the foot in remission. Diabetes. Metab. Res. Rev, 2012, vol. 28, no. 1, pp. 15–20. DOI: 10.1002/dmrr.2231
- Sciascia S., Cecchi I., Massara C., Rossi D., Radin M., Ladehesa P.L., Cuinazu F., Ribini E., Foddai S.G., Alba P., Escudero A., Menegatti E., Roccatello D. Thermography in systemic sclerosis patients and other rheumatic diseases: Diagnosis, disease activity assessment, and therapeutic monitoring. Autoimmun. Rev, 2020, vol. 19, no. 2, pp. 102449. DOI: 10.1016/j.autrev.2019.102449
- Hillen B., Pfirrmann D., Nagele M., Simon P. Infrared Thermography in Exercise Physiology: The Dawning of Exercise Radiomics. Sport. Med., 2020, vol. 50, no. 2, pp. 263–282. DOI: doi.org/10.1007/s40279-019-01210-w
- Sanchis-Sánchez E., Vergara-Hernandez C., Cibrian M.R., Salvador R., Sanchis E., Codoner-Franch P. Infrared thermal imaging in the diagnosis of musculoskeletal injuries: A systematic review and meta-analysis. Am. J. Roentgenol, 2014, vol. 203, no. 4, pp. 875–882. DOI: 10.2214/ AJR.13.11716
- Thiessen F.E.F., Tondu T., Cloostermans B., Dirkx Y.A.L., Auman D., Cox S., Verhoeven V., Hubens G., Steenackers C., Tjalma W.A.A. Dynamic InfraRed Thermography (DIRT) in DIEP-flap breast reconstruction: A review of the literature. Eur. J. Obstet. Gynecol. Reprod. Biol., 2019, no. 242, pp. 47–55. DOI: 10.1016/j.ejogrb.2019.08.008
- Mountz J.M., Alavi A., Mountz J.D. Emerging optical and nuclear medicine imaging methods in rheumatoid arthritis. Nat. Rev. Rheumatol, 2012, vol. 8, no. 12, pp. 719–728. DOI: 10.10.38/nrrheum.2012.148
- Avetisov S.E., Novikov I.A., Lutsevich E.E., Reyn E.S. Use of infrared thermography in ophthalmology. The Russian Annals of Ophthalmology, 2017, no. 6, pp. 99–104. DOI: 10.17116/oftalma2017133699-104
- Topalidou A., Ali M., Sekulic S., Downe S. Thermal imaging applications in neonatal care: A scoping review. BMC Pregnancy Childbirth. BMC Pregnancy and Childbirth, 2019, vol. 19, no. 1. DOI: 10.1186/s12884-019-2533-y
- Tavares I.M., Vardasca R., Cera N., Perera R., Nimbi F.M., Lisy D., Janssen E., Nobre P.J. A review of infra-red thermography as applied to human sexual psychophysiology. Int. J. Psychophysiol, 2018, vol. 133, pp. 28–40. DOI: 10.1016/j.ijpsycho.2018.09.001
- Oliveira A.L., Moore Z., Connor T.O., Patton D. Accuracy of ultrasound, thermography and subepidermal moisture in predicting pressure ulcers: A systematic review. J. Wound Care, 2017, vol. 26, no. 5, pp. 199–215.
- Dibai-Filho A.V., Guirro R.R.D.J. Evaluation of myofascial trigger points using infrared thermography: A critical review of the literature. J. Manipulative Physiol. Ther. National University of Health Sciences, 2015, vol. 38, no. 1, pp. 86–92. DOI: 10.1016/j.jmpt.2014.10.010
- Solivetti F.M., Desiderio F., Guerrisi A., Bonadies A., Maini C.U.M., Fillippo Di S., D’Orazi V., Sperduti I., Carlo Di S. HF ultrasound vs PET-CT and telethermography in the diagnosis of in-Transit metastases from melanoma: A prospective study and review of the literature. J. Exp. Clin. Cancer Res., 2014, vol. 33, no.1, pp. 1–7.
- Kadado A.J., Akar J.G., Hummel J.P. Luminal esophageal temperature monitoring to reduce esophageal thermal injury during catheter ablation for atrial fibrillation: A review. Trends Cardiovasc. Med., 2019, vol. 29, no. 5, pp. 264–271. DOI: 10.1016/j.tcm.2018.09.010
- Raiko J., Koskensalo K., Sainio T. Imaging-based internal body temperature measurements: The journal Temperature toolbox. Temperature, 2020, vol. 7, no. 4, pp. 363–388. DOI: 10.1080/23328940.2020.1769006
- Antink C.H., Lypa S., Paul M., Yu X. A Broader Look: Camera-Based Vital Sign Estimation across the Spectrum. Yearb. Med. Inform., 2019, vol. 28, no. 1, pp. 102–114. DOI: 10.1055/s-0039-1677914
- Zhorina L.V. Methods of noninvasive measuring of internal temperature of body. Tambov Univ. Reports. Ser. Nat. Tech. Sci., 2017, vol. 22, no. 2, pp. 464–470. DOI: 10.20310/1810-0198-2017-22-2-464-470
- Drakopoulou M., Moldovan C., Toutouzas K., Tousoulis D. The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective. Curr. Opin. Pharmacol., 2018, vol. 39, pp. 99–104. DOI: 10.1016/j.coph.2018.02.008
- Snow B.W. New noninvasive methods to diagnose vesicoureteral reflux. Curr. Opin. Urol., 2011, vol. 21, no. 4, pp. 339–342. DOI:10.1097/MOU.0b013e328346ae60
- Zhou Y. Noninvasive Thermometry in High-Intensity Focused Ultrasound Ablation. Ultrasound Quarterly, 2017, vol. 33, no. 4, pp. 253–260. DOI: 10.1097/RUQ.0000000000000300
- Liu S., Zhang R., Zheng Z., Zheng Y. Electromagnetic—Acoustic sensing for biomedical applications. Sensors, 2018, vol. 18, no. 10, pp. 3203-3203. DOI: 10.3390/s18103203
- Fani F. et al. CT-based thermometry: An overview. Int. J. Hyperth, 2014, vol. 30, no. 4, pp. 219–227. DOI: 10.3109/ 02656736.2014.922221
- Odeen H., Parker D.L. Magnetic resonance thermometry and its biological applications — Physical principles and practical considerations. Prog Nucl Magn Reson Spectrosc, 2019, vol. 110, pp. 34–61. DOI: 10.1016/j.pnmrs.2019.01.003
- Zaltieri M., Massaroni C., Canti F.M., Schena E. Techniques for temperature monitoring of myocardial tissue undergoing radiofrequency ablation treatments: An overview. Sensors, 2021. vol. 21, no. 4, pp. 1–27. DOI: 10.3390/s21041453
- LaRiviere M.J., Gross R.E. Stereotactic Laser Ablation for Medically Intractable Epilepsy: The Next Generation of Minimally Invasive Epilepsy Surgery. Frontiers in Surgery, 2016, vol. 3(64). DOI: 10.3389/fsurg.2016.00064
- Muller B.G., Bos Willemien van den, Pinto Peter A., Rosette Jean J de la. Imaging modalities in focal therapy: Patient selection, treatment guidance, and follow-up. Curr. Opin. Urol., 2014, vol. 24, no. 3, pp. 218–224. DOI: 10.1097/MOU.0000000000000041
- Patel N.V., Mian M., Stafford P.T., Nahed B.V., Willie J.T., Gross R.E., Danish S.F. Laser interstitial thermal therapy technology, physics of magnetic resonance imaging thermometry, and technical considerations for proper catheter placement during magnetic resonance imaging—Guided laser interstitial thermal therapy. Clin. Neurosurg, 2016, vol. 79, no. 6. pp. S8—S16. DOI: 10.1227/NEU.0000000000001440
- Zhu L., Altman M.B., Laszlo A., Straude W., Zoberi I., Hallahan D.E., Chen H. Ultrasound Hyperthermia Technology for Radiosensitization. Ultrasound Med. Biol., 2019, vol. 45, no. 5, pp. 1025–1043. DOI: 10.1016/j.ultrasmedbio. 2018.12.007
- Diaz R., Ivan M.E., Hanft S., Vanni S., Manzano C., Jagid J., Komotar R.T. Laser interstitial thermal therapy: Lighting the way to a new treatment option in neurosurgery. Clin. Neurosurg., 2016, vol. 79, no. 6. pp. S3—S7.
- Feng Y., Fuentes D. Model-based planning and real-time predictive control for laser-induced thermal therapy. Int. J. Hyperth., 2011, vol. 27, no. 8, pp. 751–761. DOI: 10.3109/ 02656736.2011.611962
- Datta N.R., Ordóñez S. Gómez, Gaipl U.S., Paulides M.M., Crezee H., Gellermann J., Marder D., Puric E., Bodis S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treat. Rev., 2015, vol. 41, no. 9, pp. 742–753. DOI: 10.1016/j.ctrv.2015.05.009
- Kuroda K. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments. J. Magn. Reson. Imaging, 2018, vol. 47, no. 2, pp. 316–331. DOI: 10.1002/jmri.25770
- Fischer L.H., Harms G.S., Wolfbeis O.S. Upconverting nanoparticles for nanoscale thermometry. Angewandte Chemie, 2011, vol. 50, no. 20, pp. 4546–4551. DOI: 10.1002/anie.201006835
- Qiao J., Mu X., Qi L. Construction of fluorescent polymeric nano-thermometers for intracellular temperature imaging: A review. Biosens. Bioelectron., 2016, vol. 85, pp. 403–413. DOI: 10.1016/j.bios.2016.04.070
- Schirhagl R.,Chang K., Loretz M., Degen C. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem., 2014, vol. 65, pp. 83–105. DOI: 10.1146/annurev-physchem-040513-103659
- Zhou H., Sharma M., Berezin O., Zuckerman D., Berezin M.Y. Nanothermometry: From Microscopy to Thermal Treatments. Chemphyschem, 2016, vol. 17, no. 1, pp. 27–36. DOI: 10.1002/cphc.201500753
- Rocha J., Brites C.D.S., Carlos L.D. Lanthanide Organic Framework Luminescent Thermometers. Chemistry, 2016, vol. 22, no. 42, pp. 14782–14795. DOI: 10.1002/chem.201600860
- Bednarkiewicz A., Morciniak L., Carlos L.D., Jaque D. Standardizing luminescence nanothermometry for bio-medical applications. Nanoscale, 2020, vol. 12, no. 27, pp. 14405–14421. DOI: 10.1039/D0NR03568H
- Zhou J., Rosal B.D., Jaque D., Uchiyana S., Jin D. Advances and challenges for fluorescence nanothermometry. Nat. Methods. Springer US, 2020, vol. 17, no. 10, pp. 967–980. DOI: 10.1038/s41592-020-0957-y
- Suzuki M., Plakhotnik T. The challenge of intracellular temperature. Biophys. Rev., 2020, vol. 12, pp. 593–600. DOI: 10.1007/s12551-020-00683-8
- Kenny G.P., Jay O. Thermometry, calorimetry, and mean body temperature during heat stress. Compr. Physiol., 2013, vol. 3, no. 4, pp. 1689–1719. DOI: 10.1002/cphy.c130011
- Bach A.J.E., Stewart I.B., Minett G. M., Costell J.T. Does the technique employed for skin temperature assessment alter outcomes? A systematic review. Physiol. Meas, 2015, vol. 36, no. 9 pp. 27‒51. DOI: R27—R51. 10.1088/0967-3334/36/9/R27
- Sedaghat F., Tuncali K. Enabling Technology for MRI-Guided Intervention. Top. Magn. Reson. Imaging., 2018, vol. 27, no. 1 pp. 5–8. DOI: 10.1097/RMR.0000000000000148
- Saccomandi P., Schena E., Silvestri S. Techniques for temperature monitoring during laser-induced thermotherapy: An overview. Int. J. Hyperth., 2013, vol. 29, no. 7, pp. 609–619. DOI: 10.3109/02656736.2013.832411
- Neves E.B., Vilaca-Alves J., Antunes N., Felisberto I.M.V., Rosa C., Reis V.M. Different responses of the skin temperature to physical exercise: Systematic review. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, 2015, Novem. 2015, pp. 1307–1310.
- Moreira D.G., Costello J.T., Brito C.J., Adamczyk J.G., Ammer K., Bach A.J.E., Costa C.M.A., Eglin C., Fernandes A.A., Fernández-Cuevas I., Ferreira J.J.A., Formenti D., Fournet D., Havenith G., Howell K., Jung A., Kenny G.P., Kolosovas-Machuca E.S., Maley M.J., Merla A., Pascoe D.D., Quesada J.I.P., Schwartz R.G., Seixas A.R.D., Selfe J., Vainer B.G., Sillero-Quintana M. Thermographic imaging in sports and exercise medicine: A Delphi study and consensus statement on the measurement of human skin temperature. J. Therm. Biol., 2017, vol. 69, pp. 155–162. DOI: 10.1016/j.jtherbio.2017.07.006
- Daanen H., Bose-O’Reilly S., Brearley M., Flouris D.A., Gerrett N.M., Huynen M., Jones H.M., Lee J.K.W., Morris N., Norton I., Nybo L., Oppermann E., Shumake-Guillemot J., Van den Hazel P. COVID-19 and thermoregulation-related problems: Practical recommendations. Temperature. Taylor & Francis, 2021, vol. 8, no. 1, pp. 1–11. DOI: 10.1080/23328940.2020.1790971
- Mazerolle S.M., Ganio M.S., Casa D.J., Vingren J., Klau J. Is oral temperature an accurate measurement of deep body temperature? A systematic review. J. Athl. Train, 2011, vol. 46, no. 5, pp. 566–573.
- Geijer H., Udumyan R., Lohse G., Nilsagard Y. Temperature measurements with a temporal scanner: Systematic review and meta-analysis, BMJ Open.,2016, Vol. 6, no 3, DOI: 10.1136/bmjopen-2015-009509
- Hughes C., Voros S., Moreau-Gaudry A. Unintended Consequences of Sensor, Signal, and Imaging Informatics:
- New Problems and New Solutions. Yearb. Med. Inform., 2016, no. 1, pp. 159–162. DOI: 10.15265/IY-2016-053
- Blazek V., Blanik N., Blazer C. R., Paula M., Pereira C., Koeny M., Venema B., Leonhard S. Active and Passive Optical Imaging Modality for Unobtrusive Cardiorespiratory Monitoring and Facial Expression Assessment. Anesth. Analg., 2017, vol. 124, no. 1, pp. 104–119. DOI: 10.1213/ ANE.0000000000001388
- Taylor W., Abbasi Q.H., Dashhtipour K., Arsari S., Shah S.A., Khalid A., Imran M.A. A review of the state of the art in non-contact sensing for covid-19. Sensors, 2020, vol. 20, no. 19, pp. 1–19. DOI: 10.3390/s20195665
- Sousa P., Felizardo V., Olivera D., Couto R., Garcia N.M. A review of thermal methods and technologies for diabetic foot assessment. Expert Rev. Med. Devices, 2015, vol. 12, no. 4, pp. 439–448. DOI: 10.1586/17434440.2015.1032251
- Adam M., Ng E.Y.K., Tan J.H., Heng M.L., Tong J.W.K., Acharya U.R. Computer aided diagnosis of diabetic foot using infrared thermography: A review. Comput. Biol. Med., 2017, vol. 91, pp. 326–336. DOI: 10.1016/j.compbiomed.2017.10.030
- Ring E.F.J., Ammer K. Infrared thermal imaging in medicine. Physiol. Meas, 2012, vol. 33, no. 3, pp. 33‒46. DOI: 10.1088/0967-3334/33/3/R33
- Machoy M., Szyszka-Sommerfeld L., Rahnama M., Koprowski R., Wilczynski S., Wozniak K. Diagnosis of Temporomandibular Disorders Using Thermovision Imaging. Pain Res. Manag., 2020, vol. 2020, DOI: 10.1155/2020/5481365
- Naziyok T.P., Zeleke A.A., Röhrig R. Contactless patient monitoring for general wards: A systematic technology review. Stud. Health Technol. Inform., 2017, vol. 228, pp. 707–711. DOI: 10.3233/978-1-61499-678-1-707
- Magalhaes C., Vardasca R., Mendes J. Recent use of medical infrared thermography in skin neoplasms // Ski. Res. Technol. 2018. vol. 24, no. 4. pp. 587–591. DOI: 10.1111/srt.12469
- Herrick A.L., Murray A. The role of capillaroscopy and thermography in the assessment and management of Raynaud’s phenomenon. Autoimmun. Rev., 2018, vol. 17, no. 5, pp. 465–472. DOI: 10.1016/j.autrev.2017.11.036
- Schnelldorfer T., Jenkins R.L., Birkett D.H., Georgakoudi I. From shadow to light: Visualization of extrahepatic bile ducts using image-enhanced laparoscopy. Surg. Innov., 2015, vol. 22, no. 2, pp. 194–200. DOI: 10.1177/ 1553350614531661
- Mehmood N., Hariz A., Fitridge R., Voelcker N.H. Applications of modern sensors and wireless technology in effective wound management. J. Biomed. Mater. Res. — Part B Appl. Biomater., 2014, vol. 102, no. 4, pp. 885–895. DOI: 10.1002/jbm.b.33063
- Oey C.H.W., Moh S. A survey on temperature-aware routing protocols in Wireless Body Sensor Network. Sensors, 2013, vol. 13, no. 8, pp. 9860–9877. DOI: 10.3390/s130809860