Hydraulic losses and heat transfer of a single tube with surface vortex generators


Аuthors

Baranova T. A.1*, Danilchik E. S.2**, Zhukova Y. V.1, Y. 3, Marshalova G. S.1***, G. 3, Popov I. A.3****, I. 3, Chorny A. D.1*****

1. A. V. Luikov Heat and Mass Transfer Institute of NAS of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus
2. ,
3. Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia

*e-mail: bartat@tut.by
**e-mail: katya.156.156@gmail.com
***e-mail: galiana.sidorik@icloud.com
****e-mail: popov-igor-alex@yandex.ru
*****e-mail: anchor@hmti.ac.by

Abstract

Currently, there is a vast number of information sources on the heat transfer enhancement by charging the relief in the form of dimples, indents and cavities of various shapes on the heat transfer surface. However, there are still no elaborated recommendations on the place of the dimples placing location and density of their arrangement. The presented article studies the convective thermal exchange of single tubes with vortex generators arranged on their external surface shaped as spherical dimples, with engagement of numerical modeling methods and experimental visualization of the flows. The vortex generators presence changes the flow structure and creates the flow turbulence near the vortex generators, which may lead to the trace length decrease behind the tubes and, as a consequence, hydraulic losses reduction. The article demonstrates that in certain situations the thermal/hydraulic performance of smooth tubes is higher than that of dimpled ones. The results of analysis of the flow structure over single dimpled tubes reveal that vortex structures being formed in the dimples differs depending on their arrangement of the surface.

Keywords:

numerical simulation, experimental study, heat transfer, turbulence, flow control, heat transfer enhancement, single tube, vortex generators

References

  1. Eiffel G. Experiences sur la resistance de l’air. Comptes Rendus, 1903, vol. 137, pp. 30‒32.
  2. Prandtl L. Gidroaeromekhanika (Hydroaeromechanika). Izhevsk, SIC «Regular and chaotic dynamics», 2000, 576 p.
  3. Landau L.D., Lifshits E.M. Gidrodinamika. Teoreticheskaya fizika: v 10 t (Hydrodynamics. Theoretical Physics: in 10 t.). Moscow, Nauka, 1986, vol. 6, 736 p.
  4. Yurchenko N., River R., Pavlovsky R. Control of the profile aerodynamics using streamwise vortices generated in a boundary layer. Proc. World Congress «Aviation in the XXI-st Centary», Kyiv, Ukraine, 2003, pp.14‒16.
  5. Kalinin E.K., Dreitser G.A., Kopp I.Z., Myakotchin A.S. Efficient Surfaces for Heat Exchangers Fundemantabs and design. Begell House, New-Work, 2002, 392 p.
  6. Gortyshov Yu.F., Popov I.A., Olimpiev V.V., Shchelchkov A.V., Kas’kov S.I. Teplogidravlicheskaya effektivnost’ perspektivnykh sposobov intensifikatsii teplootdachi v kanalakh teploobmennogo oborudovaniya. Intensifikatsiya teploobmena: monografiya (Thermohydraulic efficiency of promising methods of heat transfer intensification in heat exchange equipment channels. Intensification of heat exchange: monograph). Kazan’, Tsentr innovatsionnykh tekhnologii, 2009, 531 p.
  7. Isaev S.A., Baranov P.A., Gortyshov Yu.F., Guvernyuk S.V., Mazo A.B., Smurov M.Yu., Sudakov A.G., Usachov A.E., Kharchenko V.B. Aerodinamika utolshchennykh tel s vikhrevymi yacheikami. Chislennoe i fizicheskoe modelirovanie. (Aerodynamics of thickened bodies with vortex cells. Numerical and physical modeling). St. Petersburg, Izd-vo Politekh. Un-ta, 2016, 215 p.
  8. Chzhen P. Otryvnye techeniya (v 3 tomakh) (Detached currents (in 3 volumes)). Moscow, Mir, 1972, 916 p.
  9. Roshko A. On the drag and shedding frequency of bluff cylinders. Nat. Adr. Comm. Aero., Wash., Tech., 1954, Note 3169.
  10. Igarashi T. Correlation between heat transfer and fluctuating pressure in separated region of a circular cylinder. International Journal of Heat and Mass Transfer, 1984, vol. 27, no. 6, pp. 927‒937.
  11. Zhdanov V., Kukharchuk I., Terekhov V. Velocity field behind a plate installed in the inner region of a turbulent boundary layer. Journal of Engineering Physics and Thermophysics, 2020, vol. 93, no. 5, pp. 1233–1239.
  12. D’yachenko A.Yu., Zhdanov V.L., Smul’skii Ya.I., Terekhov V.I. Eksperimental’noe issledovanie teploobmena v otryvnoi oblasti za obratnym ustupom pri nalichii tabov. Teplofizika i aeromekhanika, 2019, vol. 26, no. 4, pp. 549–560.
  13. Baranova T.A., Zhdanov V.L., Zhukova Yu.V., Isaev S.A. Reduction of Resistance and Heat Transfer Enhancement in Flow Past a Cylinder with Jet and Vortex Generators, Heat Transfer Research, 2010, V. 41, no. 4, pp. 401-411.
  14. Zhukauskas A.A. Konvektivnyi perenos v teploobmennikakh (Convective transfer in heat exchangers). Moscow, Nauka, 1982, 472 p.
  15. Menter F.R., Kuntz M. and Langtry R. Ten years of industrial experience with the SST turbulence model, in Hanjalic K., Nagano Y., Tummers M. (ed.). Turbulence, Heat and Mass Transfer, Begell House, 2003, vol. 4, pp. 625‒632.
  16. Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi (Fundamentals of Heat Transfer). Moscow, Energiya, 1977, 344 p.
  17. Dyban E.P., Epik E.Ya. Teplomassoobmen i gidrodinamika turbulizirovannykh potokov (Heat and mass transfer and hydrodynamics of turbulent flows). Kiev, Naukova dumka, 1985, 296 p.
  18. Gimbutis G.I., Shapola V.I. K voprosu teplootdachi pri poperechnom obtekanii tsilindra vozdukhom (On the issue of heat transfer during transverse air flow around the cylinder), V kn. Mekhanika (in the book Mechanics), Kaunas, 1972, pp. 226‒227.
  19. Nakamura H., Igarashi T. Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3000 to 15000. International Journal of Heat and Fluid Flow, 2004, vol. 25, no. 5, pp. 741‒748.
  20. Zhukova Yu.V., Baranova T.A., Isaev S.A., Zhdanov V.L. Chislennoe modelirovanie nestatsionarnogo poperechnogo obtekaniya krugovogo tsilindra pri razlichnykh chislakh Reinol’dsa. Reports of Academy of Sciences of Belarus, 2008, vol. 52, no. 3, pp. 90‒95.
  21. Kiknadze G.I., Gachicheladze I.A., Alekseev V.V. Samoorganizatsiya smercheobraznykh strui v potokakh vyazkikh sploshnykh sred i intensifikatsiya teploobmassoobmena, soprovozhdayushchaya eto yavlenie (Self-organization of tornado-like jets in flows of viscous continuous media and intensification of heat and mass transfer accompanying this phenomenon). Moscow, Izdatel’stvo MEI, 2005, 84 p.
  22. Belen’kii M.Ya., Gotovskii M.A., Lekakh B.M., Fokin B.S., Khabenskii V.B. Eksperimental’noe issledovanie teplovykh i gidravlicheskikh kharakteristik teploobmennykh poverkhnostei, formovannykh sfericheskimi lunkami. TVT, 1991, vol. 29, no. 6, pp. 1142–1147.
  23. Bystrov Yu.A., Isaev S.A., Kudryavtsev N.A., Leont’ev A.I. Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v paketakh trub (Numerical simulation of vortex heat transfer enhancement in packages of pipes). St.Peterburg, Sudostroenie, 2005, 392 p.
  24. Chudnovsky Ya., Kozlov A. Heat transfer enhancement and fouling mitigation potential due to dimpling the convective surfaces. International Heat Transfer Conference, no. HTE—21, Sidney, Australia, 2006, 10 p.
  25. Chudnovsky Ya. Vortex Heat Transfer Enhancement for Chemical Industry Fired Heaters. 2004 AIChE Spring Technical Meeting, New Orleans, USA, 2004.
  26. Williamson C.H.K. Vortex Dynamics in the Cylinder Wake. Annual Review of Fluid Mechanics, 1996, vol. 28, pp. 477‒539.
  27. Bloor M. The transition to turbulence in the wake of a circular cylinder. Journal of Fluid Mechanics, 1964, vol. 19, no. 2, pp. 290‒304.
  28. Norberg C. An experimental investigation of the flow around a circular cylinder: Influence of aspect ratio. Journal of Fluid Mechanics, 1994, no. 258, pp. 287‒316.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI