Rocket engines for spacecraft on fluidized solid propellants, their design and thermodynamics


Аuthors

Elkin A. V.

Perm National Research Polytechnic University, PNRPU, 29, Komsomolsky Prospekt, Perm, 614990, Russia

e-mail: elkinav237@gmail.com

Abstract

The purpose of the research is to assess the possibility of using rocket engines on fluidized (powdered) solid propellants as propulsion systems for spacecraft for adjusting the orbits of space objects. This study analyzes various approaches to the supply of powdered fuels in order to design the schemes of various rocket engines on fluidized solid propellants and provide requirements for powdered fuels. The research also covers system for feeding powdered components. The methodology for calculating the fuel supply system is determined. The critical equilibrium velocity of the outflow of various granular materials has been obtained. As a result of the thermodynamic calculation of the fuel compositions considered in this research, the optimal fuel compositions have been determined that can compete with liquid propellant rocket fuels, and are also more environmentally friendly and easy to operate. The actual density of the first composition is approximately 10-15% higher than that of similar liquid propellants. The actual density of the second composition is approximately 1-10% higher than that of similar liquid propellants. The volumetric vacuum specific impulse of the first composition is approximately 10% higher than that of similar liquid propellants. The volumetric vacuum specific impulse of the second composition is approximately the same as that of liquid propellants. Engines on fluidized solid propellants will make spacecraft easier to operate, capable of repeated on and off cycles, environmentally friendly and reliable.

Keywords:

rocket engine, fluidized solid fuel, powdered fuel, spacecraft, multiple-on-off, reliability, environmental friendliness

References

  1. Veniaminov S.S., Chervonov A.M. Kosmicheskii musor ‒ ugroza chelovechestvu vtoroe izdanie, ispravlennoe i dopolnennoe (Space Debris — Threat to Humanity Second Edition, Revised and Expanded). Mekhanika, upravlenie i informatika, 2013, no. 5(17), pp. 1‒208.
  2. Adushkin V.V., Aksenov O.Yu., Kozlov S.I., Veniaminov S.S. O podkhodakh k otsenke potentsial’noi opasnosti razrushenii i stolknovenii kosmicheskikh ob’ektov. Vozdushno-kosmicheskaja sfera, 2018, no.1 (94), pp. 54‒63.
  3. Chen L., Bai X.-Z., Liang Y.-G., Li K.-B. Orbital Data Applications for Space Objects: Conjunction Assessment and Situation Analysis. Springer, Singapore, 2017, 318 p. DOI: https://doi.org/10.1007/978-981-10-2963-9
  4. Bergh M., Garcia V. A computational model for assessing high-velocity debris impact in space applications. Shock Waves, 2017, no. 27, pp. 675–684. DOI:10.1007/s00193-017-0709-9
  5. Ekimenko A.A., Mikhailov D.Yu. Issledovanie vzaimodeistviya chastits kosmicheskogo musora s elementami konstruktsii kosmicheskogo apparata. Trudy MAI, 2021, no. 119, DOI:10.34759/trd-2021-119-02
  6. Matteo Emanuelli, Deva Prasad, Giulia Federico Conceptualizing an economically, legally and politically viable active debris removal option. Dinamika sistem, mehanizmov i mashin, 2014, no. 2, pp. 176‒187. DOI: 10.1016/j.actaast-ro.2014.07.035
  7. Egorychev V.S., Sulinov A.V. Zhidkostnye raketnye dvigateli maloi tyagi i ikh kharakteristiki (Low-thrust liquid-propellant rocket engines and their characteristics: a tutorial). Samara, Izd-vo SGAU, 2014, 128 p.
  8. Ryzhkov V.V., Sulinov A.V. Dvigatel’nye ustanovki i raketnye dvigateli maloi tyagi na razlichnykh fizicheskikh printsipakh dlya sistem upravleniya malykh i sverkhmalykh kosmicheskikh apparatov. Vestnik Samarskogo universiteta. Ajerokosmicheskaja tehnika, tehnologii i mashinostroenie, 2018, vol. 17, no. 4, pp. 115‒128.
  9. Egorychev B.C., Kondrusev B.C. Topliva himicheskih raketnyh dvigatelej (Chemical rocket engine fuels). Samara, Izd-vo SGAU, 2007, 74 p.
  10. El’kin A.V., Zemerev E.S., Malinin V.I., Khimenko L.L., Khaziakhmetova F.R. Raketnyi dvigatel’ na granulirovannom tverdom toplive , Vestnik Permskogo nacional’nogo issledovatel’skogo politehnicheskogo universiteta. Ajerokosmicheskaja tehnika, 2021, no. 64, pp. 16‒24. DOI: 10.15593/2224-9982/2021.64.02
  11. Malinin V.I. Vnutrikamernye processy v ustanovkah na poroshkoobraznyh metallicheskih goryuchih (Intrachamber processes in installations using powdered metal fuels). Ekaterinburg-Perm: UrO RAN, 2006, 262 p.
  12. Malinin V.I., Kolomin E.I., Antipin I.S. Vosplamenenie i gorenie aerovzvesi alyuminiya v reaktore vysokotemperaturnogo sinteza poroshkoobraznogo oksida alyuminiya. Fizika goreniya i vzryva, 2002, V. 38, no. 5, pp. 41–51.
  13. Kryukov A.Yu., Petrenko V.I., Malinin V.I. Powdered metal fuel supply system in a pilot plant for the synthesis of dispersed aluminum oxide. Fundamental’nye i prikladnye problemy sovremennoj mekhaniki: sb. dokl. III Vseros. nauch.-tekhn. konf. (Proc. conf. «Fundamental and applied problems of modern mechanics»), Tomsk, 2–5 okt. 2002, pp. 78‒79.
  14. Zemerev E.S. Kriticheskoe istechenie sypuchih materialov v pnevmotransportnoj sisteme podachi poroshkov. PhD, Diss. (Critical outflow of bulk materials in a pneumatic conveying system for feeding powders PhD, Diss.). Perm, 2017, 116 p.
  15. Orlin S.A. Ispol’zovanie geliya v zhidkostnykh raketnykh dvigatelyakh. Inzhenernyj zhurnal: nauka i innovacii, 2017, no. 1(61), pp. 1‒11. DOI: 10.18698/2308-6033-2017-1-1572
  16. Ostrovskij G.M., Isakov V.P., Sokolov V.N. Zhurnal prikl. himii, 1976, no. 8, pp. 1773‒1783.
  17. Trusov B.G. Modelirovanie himicheskih i fazovyh ravnovesij pri vysokihtemperaturah: Instrukcija pol’zovatelja Astra 4 (Modeling of chemical and phase equilibria at high temperatures: Astra 4 User Manual). MGTU im. N.Je. Baumana, Moscow, 1991, 40 p.
  18. Md Zishan Akhter, Md Ashique Hassan. Ballistic and thermomechanical characterisation of paraffin-based hybrid rocket fuels loaded with light metal hydrides. Acta Astronautica, 2020, no. 178, pp. 370–381. DOI: https://doi.org/ 10.1016/j.actaastro.2020.09.015
  19. Luigi T. DeLuca, Luciano Galfetti, Filippo Maggi, Giovanni Colombo, Laura Merotto, Matteo Boiocchi, Christian Paravan, Alice Reina, Pietro Tadini, Luciano Fanton. Characterization of HTPB-based solid fuel formulations: Performance, mechanical properties, and pollution. Acta Astronautica, 2013, no. 92, pp. 150‒162. DOI: https://doi.org/10.1016/j.actaastro.2012.05.002
  20. Dobrovol’skij M.V. Zhidkostnye raketnye dvigateli. Osnovy proektirovanija: uchebnoe posobie (Liquid propellant rocket engines. Design Basics: A Tutorial). Moscow, Izd-vo MGTU im. N.Je. Baumana, 2016, 486 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI