Аuthors
Ivanov N. S.1*,
Kuzma-Kichta Y. A.1**,
Lavrikov A. V.1,
Stenina N. A.2,
Shtefanov Y. P.3,
Prokopenko I. F.3
1. National Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya str., Moscow, 111250 Russia
2. Moscow Power Engineering Institute (National Research University), 14, Krasnokazarmennaja St., Moscow, 111250, Russia
3. ,
*e-mail: ivanovniks@mpei.ru
**e-mail: kuzma@itf.mpei.ac.ru
Abstract
Nano- and microporous coatings are being currently employed in various technical devices as a promising method for heat transfer increasing while phase transitions. Plans for Russia hampered due to the permafrost thawing. Thermo-siphons find application for soil thermal stabilization in permafrost regions, as well as for cooling electronics and space technology elements. The article presents a review of well-known studies in the field of heat transfer intensification and thermal resistance reduction of thermo-siphons and heat pipes. The presented work deals with the new technology development for the combined coating formation of aluminum oxide nanoparticles applied on a structured surface in the thermo-siphon evaporator. The authors proposed the technology for porous coating forming from nanoparticles with micro trenches, which is based on the processes of evaporation of colloid liquid from nanoparticles and acetone in the thermo-siphon evaporator. Data on the height of the capillary rise of water and acetone on the surface with the developed coating were obtained. The porous coating in the evaporator allows increasing the height of liquid rise from the lower generatrix to the upper one. Thermal resistance of the low-inclined thermo-siphon with evaporator with the porous coating with micro trenches was studied. The obtained data on thermal resistance of the improved thermo-siphon were compared with the well-known options. The article demonstrates the possibility for the thermo-siphon thermal resistance reduction up to three times by applying the developed coating into evaporator of the thermo-siphon.
Keywords:
thermo-siphon, capillary rise, porous coating, thermal resistance, nanoparticles
References
- Dzyubenko B.V., Kuzma-Kichta Ya.A., Leontiev A.I., Fedik I.I., Kholpanov L.P. Intensification of Heat and Mass Transfer on Macro-, Micro-, and Nanoscale, New York, Begell House, 2016, 564 p.
- Kuzma-Kichta Yu.A., Ivanov N.S., Lavrikov A.V., Shtefanov Yu.P., Prokopenko I.F. Issledovanie metodov umen’sheniya termicheskogo soprotivleniya sostavnogo termostabilizatora, Teplovye protsessy v tekhnike, 2019, Vol. 11, no. 10, pp. 447‒452.
- Kuzma-Kichta Yu.A., Ivanov N.S., Lavrikov A.V., Shtefanov Yu.P., Prokopenko I.F. Issledovanie transportnykh svoistv isparitelya modeli termostabilizatora s razlichnoi strukturoi poverkhnosti, Teplovye protsessy v tekhnike, 2016, Vol. 8, no. 9, pp. 395‒401.
- Kuzma-Kichta Yu.A., Ivanov N.S., Lavrikov A.V., Shtefanov Yu.P., Prokopenko I.F., Skvortsov P.I. Reduction thermal resistance methods in the thermal stabilizer, J. Phys.: Conf. Series. 2019. no. 1370.
- Vasiliev L.L., Grakovich L.P., Rabetskii M.I., Tulin D.V. Investigation of heat transfer by evaporation in capillary grooves with a porous coating, Journal of Engineering Physics and Thermophysics, 2012, Vol. 85, no. 2, pp. 407-414.
- Vasiliev L.L., Rabetsky M.I., Grakovich L.P., Kulikouski V.K., Zhuravlyov A.S., Kuzmich M.A. Loop thermosyphons with porous coatings, IOP Conference Series Materials Science and Engineering, 2021, no. 1139.
- Pis’mennyi E.N., Khayrnasov S.M., Rassamakin B.M. Heat transfer in the evaporation zone of aluminum grooved heat pipes, International Journal of Heat and Mass Transfer, 2018, Vol. 127, pp. 80‒88.
- Nikolaenko Yu.E., Baranyuk A., Reva S., Pis’mennyi E.N., Dubrovka F., Rohachov V.A. Improving air cooling efficiency of transmit/receive modules through using heat pipes, Thermal Science and Engineering Progress, 2019, Vol. 14, no. 3.
- Khodabandeh R., Furberg R. Heat transfer, flow regime and instability of a nano- and microporous structure evaporator in a two-phase thermosyphon loop, Int. J. Thermal Sci., 2010, Vol. 49, no. 7, pp. 1183‒1192.
- Furberg R, Palm B., Li Shanghua, Toprak M., Muhammed M. The Use of a Nano- and Microporous Surface Layer to Enhance Boiling in a Plate Heat Exchanger, Journal of Heat Transfer, 2009, Vol. 131, no. 10, 8 p.
- Feng C., Chandra S. Evaporation of ethanol films wicking on structured, porous coatings deposited on copper plates, International Journal of Heat and Mass Transfer, 2019, Vol. 136, pp. 821‒831.
- Feng C., Yugeswaran S., Chandra S. Capillary rise of liquids in thermally sprayed porous copper wicks, Experimental Thermal and Fluid Science, 2018, Vol. 98, pp. 206‒216.
- Kuzma-Kichta Y.A., Ivanov N.S., Lavrikov A.V. Transport Properties of Coatings Consisting of Al2O3 Nanoparticles, Journal of Engineering Physics and Thermophysics, 2021, Vol. 94, no. 1, pp. 30‒35. DOI: 10.1007/s10891-021-02270-4
- Kuzma-Kichta Y.A., Ivanov N.S., Chugunkov D.V., Lavrikov A.V. Wetting of Hydrophobic and Hydrophilic Coatings, Journal of Engineering Physics and Thermophysics, 2021, Vol. 94, no. 6, pp. 1549‒1556. DOI: 10.1007/s10891-021-02435-1
- Kuzma-Kichta Yu.A., Ivanov N.S., Lavrikov A.V., Kiselev D.S. Sposob polucheniya nanochastits oksida alyuminiya, Patent RU 2 665 524 C1, 30.08.2018.
- Kuzma-Kichta Yu.A., Ivanov N.S., Lavrikov A.V., Kiselev D.S. Sposob polucheniya nanochastits oksida alyuminiya, Patent RU 2 730 921 C1, 28.08.2020.
- Kuzma-Kichta Yu.A., Ivanov N.S., Lavrikov A.V., Kiselev D.S. Sposob formirovaniya poristogo pokrytiya iz nanochastits, Patent RU 2 727 406 C1, 21.07.2020.
- Ivanov N.S., Kuzma-Kichta Yu.A., Lavrikov A.V. Investigation of transport properties of porous coatings from nanoparticles of aluminum oxide, J. Phys.: Conf. Ser., 2021, Vol. 2088, p. 012022.
- Kuzma-Kichta Yu., Lavrikov A., Ustinov A. Nanoparticle capillary layer for improving thermosyphon, MicroMAST 2016. 1st International Conference on Multiscale Applications of Surface Tension , Brussels, Belgium, 5‒8 september 2016.
- Lavrikov A.V., Hammerschmidt J., Kuzma-Kichta Yu.A., Scholl S. Thermosiphon Reboilers with Enhanced Tubes, Chem. Ing. Tech., 2015, Vol. 87, no. 3, pp. 1‒8.