The effect of longitudinal and transverse pitch ratio on the heat transfer characteristics of staggered drop-shaped tubes bundle


Аuthors

Deeb R.

Damascus University, Syria, Damascus

e-mail: e.rawad.deeb@yandex.com, DeebR@mpei.ru

Abstract

The present work has been conducted to clarify the heat transfer across staggered drop-shaped tubes bundle at various longitudinal and transversal pitch ratios (the tubes bundle configures in 18 models). The investigation covers the effects of key design parameters of Reynolds numbers Re = (1.78–18.72)·103, longitudinal pitch ratios (1.44, 1.54, 1.64, 1.74, 1.84 and 2.04) and transversal pitch ratios (1.24, 1.44, 1.64 and 1.82). The results of this study show that, in contrast to the transversal pitch ratio, an increase in the longitudinal pitch ratio does not significantly affect the heat transfer. Among the investigated models, it was found that the highest effectiveness of the heat exchanger was achieved by the model «O» at Re = 1.78·103 and model «L» at Re > 1.78·103 (effectiveness values of «O» and «L» models were increased by 6.33% and 39.23‒73.78%, respectively, compared to model «A»). Correlations of the average Nusselt numbers and effectiveness for the studied models were presented.

Keywords:

drop-shaped tube, heat transfer, longitudinal pitch, transversal pitch, Nusselt number, effectiveness, CFD, Fluent

References

  1. Deeb R. Obobshchenie i analiz rezul’tatov poslednikh issledovanii v oblasti uluchsheniya kharakteristik teploobmena i gidrodinamiki pri poperechnom obtekanii gladkikh trub, Teplovye protsessy v tekhnike, 2021, Vol. 13, no. 2, pp. 50‒69.
  2. Horvat A., Leskovar M., Mavko B. Comparison of heat transfer conditions in tube bundle cross-flow for different tube shapes, Int. J. Heat. Mass. Transf., 2006, Vol. 49, pp. 1027–1038.
  3. Zeeshan M., Nath S., Bhanja D. Numerical study to predict optimal configuration of fin and tube compact heat exchanger with various tube shapes and spatial arrangements, Energy Convers Manag., 2017, Vol. 148, pp. 737–752.
  4. Berbish N.S. Heat transfer and flow behavior around four staggered elliptic cylinders in cross flow, Heat and Mass Transfer, 2011, V. 47, pp. 287–300.
  5. Zhukova Yu.V., Terekh A.M., Rudenko A.I. Konvektivnyi teploobmen i aerodinamicheskoe soprotivlenie dvukh raspolozhennykh bok o bok trub v uzkom kanale pri razlichnykh chislakh Reinol’dsa, Dokl. Nats. akad. nauk Belarusi, 2018, Vol. 62, no. 6, pp. 756‒762.
  6. Sayed Ahmed S.A.E., Mesalhy Osama M., Khass Tarek M., Hassan Abdulrahman H. Parametric Study of Air Cooling Process via Water Cooled Bundle of Wing-Shaped Tubes, The Egyptian Int. J. of Eng. Sci. and Technology, 2012, Vol. 15, no. 3, pp. 167‒179.
  7. Deeb R. Chislennoe issledovanie kharakteristik teploobmena i gidravlicheskogo soprotivleniya shakhmatnykh puchkov sdvoennykh trub krugloi i kaplevidnoi formy, Teplovye protsessy v tekhnike, 2020, Vol. 12, no. 10, pp. 434‒444.
  8. Deeb R. Vliyanie ugla ataki na kharakteristiki teploobmena pri obtekanii odinochnoi kaplevidnoi truby, Fiziko-khimicheskaya kinetika v gazovoi dinamike, 2021, Vol. 22, no. 5, pp. 43‒63.
  9. Deeb R. Vliyanie prodol’nogo rasstoyaniya na gidrodinamicheskie kharakteristiki i teploobmen pri poperechnom obtekanii shakhmatnogo puchka trub kaplevidnoi formy, Fiziko-khimicheskaya kinetika v gazovoi dinamike, 2020, Vol. 21, no. 1, pp. 1‒15.
  10. Deeb R. Vliyanie ugla ataki na teploobmennye i gidrodinamicheskie kharakteristiki shakhmatnogo puchka trub kaplevidnoi formy v poperechnom obtekanii, Doklady AN VSh RF., 2020, no. 3 (48), pp. 21–36.
  11. Deeb R., Kolotvin, A.V. Chislennoe issledovanie i sravnenie teploobmena i gidrodinamiki koridornogo puchka trub krugloi i kaplevidnoi formy, Trudy Akademenergo, 2020, Vol. 60, no. 3, pp. 42‒59.
  12. Deeb R., Sidenkov D.V. Numerical simulation of the heat transfer of staggered drop-shaped tubes bundle, Journal of Physics Conf.Series, 2019. DOI: 10.1088/1742-6596/1359/1/012135
  13. Deeb R., Sidenkov D.V. Investigation of Flow Characteristics for Drop-shaped Tubes Bundle Using Ansys Package, V International Conference on Information Technologies in Engineering Education (Inforino), Moscow, Russia, 14-17 April 2020. DOI: 10.1109/Inforino48376.2020.9111775
  14. Deeb R., Sidenkov D.V., Yezhov E.V., Ponurovskaya V.V. Calculation of radiation heat transfer in staggered drop-shaped tubes bundle, Journal of Physics.Conf. Series, 2020. DOI: 10.1088/1742-6596/1565/1/012043
  15. Deeb R., Sidenkov D.V. Numerical modelling of heat transfer and hydrodynamics for drop-shaped tubes bundle, Journal of Physics. Conf. Series, 2020. DOI: 10.1088/1742-6596/1683/4/042082.
  16. ANSYS Fluent Reference Guide, 16th ed., ANSYS. Inc. 2015, 1156 p.
  17. Orszag S.A., Yakhot, Flannery W.S., Boysan F., Choudhury D., Maruzewski J., Patel B. Renormalization Group Modeling and Turbulence Simulations, International Conference on Near-Wall Turbulent Flows, Arizona, Tempe, USA, 15‒17 March 1993.
  18. Lavasani A.M., Bayat H., Moarefdoost T. Experimental study of convective heat transfer from inline cam shaped tube bank in cross-flow, Applied thermal engineering, 2016, Vol. 65, no. 85, pp. 85‒93.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI