Heat resistance of solid inorganic glass cylinders


Аuthors

Kirichek V. A.

Taganrog institute named after A.P. Chekhov (Branch of the Rostov State University of Economics), Initsiativnaya str., 48, Taganrog, 347936, Russia

e-mail: Zhornik_Victoria@mail.ru

Abstract

In the work, calculation of the heat resistance of continuous glass cylinders with surface microcracks is carried out. Its necessity is due to the fact that in previous works on the theoretical study of the glass cylinders’ heat resistance, without taking into account surface cracks, heat resistance distribution functions turned out to be much wider than experimental ones, although the average values of heat resistance coincided. Therefore, the problem of non-stationary thermoelasticity with a radial temperature distribution for a solid cylinder of unlimited length and with a load-free annular crack exiting on its surface is solved. This problem was reduced to an integral Fredholm equation of the second kind relative to some function that determines stress intensity factor (SIF) that controls surface annular crack development in a solid cylinder under cooling. SIF dependencies on time are obtained at different ring cracks’ sizes, it is shown that if the ring crack begins to grow, then it first grows jump-like to some intermediate value. Further it grows rеlatively slowly as temperature gradients develop and, at last, stops, without reaching cylinder axis (the cylinder burst). The solution of the above problem with respect to the heat resistance of glass cylinders showed that the growing surface ring-shaped crack presence, as well as the influence of the cooling medium (water) when it penetrates as a surface active into the top of the crack at a slow stage of development, lead to a good coincidence of the theoretical heat resistance distribution functions for such cylinders with experimental ones.

Keywords:

thermal conductivity, heat transfer, thermoelastic stresses, heat resistance

References

  1. Bartenev G.M. Mekhanicheskie svoistva i teplovaya obrabotka stekla (Mechanical properties and heat treatment of glass), Moscow, Gosstroiizdat, 1960, 166 p.
  2. Tabata K., Morija M. On the thermal endurance of glass, J. Amer. Ceram. Soc., 1934, Vol. 17, no. 12, pp. 32–39.
  3. Zhornik A.I. Polya temperatur i napryazhenii, voznikayushchie v tverdykh telakh tsilindricheskoi formy pri teplovykh nestatsionarnykh vozdeistviyakh (Temperature and stress fields arising in cylindrical solids under thermal non-stationary effects), Ph.D. Thesis, Moscow, Mosk. gos. ped. in-t im. V.I. Lenina, 1972, 201 p.
  4. Zhornik (Kirichek) V.A. Razvitie diskoobraznoi treshchiny v sploshnom tsilindre s istochnikami tepla, Teplovye protsessy v tekhnike, 2009, Vol. 1, no. 4, pp. 152–158.
  5. Kartashov E.M., Kudinov V.A. Analiticheskaya teoriya teploprovodnosti i prikladnoi termouprugosti (Analytical theory of thermal conductivity and applied thermoelasticity), Samara, Izd-vo Samarskogo gos. tekhn. un-ta, 2010, 651 p.
  6. Cherepanov G.P. Mekhanika khrupkogo razrusheniya (Mechanics of brittle fracture), Moscow, Nauka, 1974, 640 p.
  7. Panasyuk V.V. Predel’noe ravnovesie khrupkikh tel s treshchinami (The ultimate equilibrium of fragile bodies with cracks). Kyiv, Naukova dumka, 1968, 246 p.
  8. Kutateladze S.S. Osnovy teorii teploobmena (Fundamentals of the theory of heat transfer), Novosibirsk, Nauka, Sibirskoe otdelenie, 1970, 659 p.
  9. Zhornik (Kirichek) V.A. Ob odnoi termouprugoi zadache dlya dvukhsloinogo tsilindra s treshchinopodobnym defektom, Materialy 8i Mezhdunarodnoi teplofizicheskoi shkoly «Teplofizicheskie issledovaniya i izmereniya v energo- i resursosberezheniya pri kontrole i upravlenii kachestvom protsessov, produktsii i uslug», Dushanbe, Tajikistan, 8−13 october 2012, pp. 379−383.
  10. Zhornik A.I., Kirichek V.A. Termouprugost’ sploshnogo tsilindra s tonkim pokrytiem na tsilindricheskoi poverkhnosti, Teplovye protsessy v tekhnike, 2016, Vol. 8, no. 7, pp. 301−311.
  11. Zhornik (Kirichek V.A.), Prokopenko Yu.A., Rybinskaya A.A., Savochka P.A. Ring-shaped crack propagation in a cylinder under nonsteady cooling, Third International Conference on «High Performance Structures and Materials III» WIT Press, Southampton, Boston, 2006, pp. 521‒528.
  12. Roberts J.A. Computation of moment of Kν(t)/Iν(t), Math. Comput, 1965, Vol. 20, no. 4, pp. 651–654.
  13. Stallibrass M.R, Int. J. Eng. Sci., 1970, Vol. 8, no. 5, pp. 351−362.
  14. Paris P., Sih. G.C. Stress analysis of cracks. Fract. Toughness Test and Appl., Proc. Amer. Soc. Test Mater., 1965, pp. 30–33.
  15. Irwin G.R. Analysis of stresses and strains near the and of a crack traversing a plate, J. Appl. Mech., 1957, Vol. 24, no. 3, pp. 361–364.
  16. Anderson A.L. Kriterii Griffitsa pri razrushenii stekla. Atomnyi mekhanizm razrusheniya (Griffiths criteria for glass destruction. Atomic mechanism of destruction), Moscow, Metallurgizdat, 1963, pp. 331−353.
  17. Bartenev G.M. Sverkhprochnye i vysokoprochnye neorganicheskie stekla (Heavy-duty and high-strength inorganic glasses), Moscow, Stroiizdat, 1974, 240 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI