Analysis of radiative heat-exchanger operation of the lunar base thermal mode ensuring system


Аuthors

Belyavskiy A. E.

,

e-mail: 614kaf1@gmail.com

Abstract

The article presents computation data of the external heat flows absorbed by the radiative heat exchangers (RHE), located vertically on the lunar surface on various latitudes. The conducted studies allowed making a conclusion that total radiation absorbed by the RHE located in the area of the bedrock was 30% less than that of the one located in the area of the lunar sea.

The results of studying the dependence of maximum total radiation absorbed by the RHE on the angle between the normal to the radiator surface and direction to the center of the Moon for various latitudes of the radiator location are presented. It follows from the study that the maximum total radiation, absorbed by the RHE, decreases with an increase in the angle between the normal to the radiator surface and direction to the center of the Moon, and it takes the minimum value when the radiator is located vertically. The article presents the results of studying of the effect of external heat fluxes on the Moon surface on the RHE operation. It was concluded that the RHE on the lunar surface operates in three modes. The first mode occurs when the RHE removes a given amount of heat. In the second mode, the radiator can still remove some heat, although less than the calculated one. The third mode of operation comes on when the external absorbed heat flux reaches a value that does not allow heat to be removed at all. An inference was drawn that ensuring the required heat removal from the pressurized bay of the lunar base habitable module by employing the external hydraulic circle of the module, formed by the analogy with the external hydraulic circuits of the «Mir» and International Space Station durable habitable space stations seemed impossible with the exception the polar zones. The article suggests an option to the problem solution of the excessive heat removal from the lunar base to the regolith during the lunar day with its successive removal to the space during the lunar night. The purpose of the performed work consists in studying the effect of external absorbed heat fluxes on the radiative heat exchanger located on the Moon surface, as well as tits operating modes on the lunar surface.

Keywords:

external heat flow, lunar surface, radiative heat exxchanger, temperature, amount of heat

References

  1. Legostaev V.P. and Lopota V.A. (ed) Luna — chag k tehnologiyam osvoeniya Solnethhoi sistemy (The moon is a
  2. step towards technologies for the development of the Solar System), Moscow, RKK «Energiya», 2011. 584 p.
  3. Semenov Yu.P. Rezul’taty i problemy razrabotok raketno-kosmicheskoi korporatsii «Energiya» v oblasti kosmicheskoi energetiki, Izvestiya RAN, Energetika, 2003, no. 5, pp. 3‒20.
  4. Shibanov G.P. Obitaemost’ kosmosa i bezopasnost’ prebyvaniya v nem cheloveka (The habitability of space and the safety of human stay in it), Moscow, Mashinostroenie, 2007. 544 p.
  5. Gribkov A.S., Evdokimov R.A. Ratsional’nyi oblik sistemy energosnabzheniya obitaemoi lunnoi bazy na raznykh etapakh ee osvoeniya, Izvestiya RAN, Energetika, 2011, no. 3, pp. 105‒116.
  6. Kudryavtseva N.S., Sadretdinova E.R. Geliosistema goryachego vodosnabzheniya dlya obitaemoi lunnoi bazy, Al’ternativnaya energetika i ekologiya, 2017, no. 7‒9, pp. 21‒33.
  7. Kobranov G.P., Tsvetkov A.P., Belov A.I., Sukhnev V.A. Vneshnii teploobmen kosmicheskikh ob"ektov (External heat exchange of space objects), Moscow, Mashinostroenie, 1977. 104 p.
  8. Kochnev K.V., Nenarokomov A.V. Modelirovanie teploobmena v simulyatore lunnogo regolita. Postanovka zadachi, Teplovye protsessy v tekhnike, 2021, Vol. 13, no. 6, pp. 264‒268. DOI: 10.34759/tpt-2020-12-6-242-251
  9. Kochnev K.V., Nenarokomov A.V. Tekhnologii obrabotki lunnogo regolita dlya posleduyushchego ispol’zovaniya, Teplovye protsessy v tekhnike, 2020, Vol. 12, no. 6. pp. 242‒251. DOI: 10.34759/tpt-2020-12-6-242-251
  10. Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmicheskogo apparata (Calculation of spacecraft heat transfer), Moscow, Mashinostroenie, 1979. 208 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI