Experimental study of pressure losses in non-equilibrium two-phase flow


Аuthors

Krapivin I. I.1*, Belyaev A. V.1**, Varava A. N.1, Dedov A. V.2

1. National Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya str., Moscow, 111250 Russia
2. Moscow Power Engineering Institute (National Research University), 14, Krasnokazarmennaja St., Moscow, 111250, Russia

*e-mail: KrapivinII@mpei.ru
**e-mail: belyaevalek@yandex.ru

Abstract

The authors conducted the study on thermal conductivity coefficients and specific heat capacity of the four samples of polymer composite materials (PCM). The article sets the levels of the thermal conductivity coefficients and heat capacity and their dependence on temperature within the range from —20°C to 80°C. The values of thermal conductivity coefficients were from 0.26 to 0.54 W/(m∙K) for PEEK (Russia), TENAX-E TPCL PEEK-4-40-HTA40 E13 3K DT-5HS-285/04AB (Japan) thermoplastics, as well as for UMT-49/T-26 thermosetting plastic (Russia). This value was 0.14–0.165 for the Aranit RUSAR S600/T-26 (Russia) fibered thermosetting plastic. The obtained results may be applied to design and development of the systems employing the PCM as a structural material, as well as for technological parameters computing of these PCM production process. A database on the thermal conductivity coefficients and specific heat capacity may be formed based on the obtained results. These results will also allow conducting verification of the numerical models of thermal conductivity of the studied PCM with account for their structure.

Keywords:

pressure loss, small diameter channels, high reduced pressures, homogeneous flow pattern, split flow pattern

References

  1. Yun J.H., Jeong J.H. A Review of Prediction Methods for Two-Phase Pressure Loss in Mini/Micro-Channels // Int. J. of Air-Conditioning and Refrigeration. 2016. Vol. 24. N 1.
  2. Zivi S.M. Estimation of steady-state steam voidfraction by means of the principle of minimum entropy production // J. Heat Transfer Trans. ASME. 1964. Vol. 86. P. 247–252.
  3. Cioncolini A., Thome J.R., Lombardi C. Unified macro-to-microscale method to predict two-phase frictional pressure drops of annular flows // Int. J. Multiphase Flow. 2009. Vol. 35. P. 1138–1148.
  4. Yang C.Y., Webb R.L. Friction pressure drop of R-12 in small hydraulic diameter extruded aluminum tubes with and without microfins // Int. J. Heat Mass Transfer. 1996. Vol. 39. P. 801–809.
  5. Yan Y.Y., Lin T.F. Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe // Int. J. Heat Mass Transfer. 1998. Vol. 41. P. 4183–4194.
  6. Lockhart R.W., Martinelli R.C. Proposed correlation of data for isothermal two-phase, twocomponent flow in pipes // Chem. Eng. Prog. 1949. Vol. 45. P. 39–48.
  7. Chisholm D. A theoretical basis for the Lockhart—Martinelli correlation for two-phase flow // Int. J. Heat Mass Transfer. 1967. Vol. 10. P. 1767–1778.
  8. Friedel L. Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow // European Two-Phase Group Metting, Ispra, Italy. 1979. Paper E2.
  9. Muller-Steinhagen H., Heck K. A simple friction pressure drop correlation for two-phase flow in pipes // Chem. Eng. Process. 1986. Vol. 20. P. 297–308.
  10. Hwang Y.W., Kim M.S. The pressure drops in microtubes and the correlation development // Int. J. Heat Mass Trans. 2006. Vol. 49. P. 1804–1812.
  11. Cicchitti A., Lombardi C., Silvestri M., Soldaini G., Zavatarelli R. Two-phase cooling experiments-pressure drop, heat transfer and burnout measurements // Energia nucleare. 1960. 7 (6). P. 407–425.
  12. Dukler A.E., Wicks M., Cleveland R.G. Pressure drop and hold-up in twophase flow // AIChE J. 1964. Vol. 10. P. 38–51.
  13. Akers W.W., Deans H.A., Crosser O.K. Condensing heat transfer within horizontal tubes // Chem. Eng. Prog. 1958. Vol. 54. P. 89–90.
  14. Qu W., Mudawar I. Measurement and prediction of pressure drop in twophase micro-channel heat sinks // Int. J. Heat Mass Transfer. 2003. Vol. 46. P. 2737–2753.
  15. Keepaiboon C., Thiangtham P., Mahianb O., Dalkılıç A.S., Wongwises S. Pressure drop characteristics of R134a during flow boiling in a single rectangular micro-channel // Int. J. Heat Mass Transfer. 2016. Vol. 71. P. 245–253.
  16. Зубов Н.О., Кабаньков О.Н., Ягов В.В., Сукомел Л.А. Расчет сопротивления трения двухфазных потоков низкого давления на основе приближенных аналитических моделей // Теплоэнергетика. 2017. № 12. С. 43‒57.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI