Engineering model of hydrogen passive autocatalytic recombiner


Аuthors

Soloviev S. L.*, Kalyakin S. G.**, Koshcheev A. V.***, Shishov A. V.****, Shandra V. I.*****, Starodubtsev M. A.******, Sedov M. K.*******

JS «VNIIAES», Ferganskaya st., 25, Moscow, Russian Federation, 109507

*e-mail: SLSoloviev@vniiaes.ru
**e-mail: SGKalyakin@vniiaes.ru
***e-mail: AVKoscheev@vniiaes.ru
****e-mail: AVShishov@vniiaes.ru
*****e-mail: VIShandra@vniiaes.ru
******e-mail: MAStarodubtsev@vniiaes.ru
*******e-mail: MKSedov@vniiaes.ru

Abstract

As of now, the actual safety task of atomic power plants (APP) both in Russia and abroad consists in ensuring hydrogen explosion safety in the course of the accident development. One of the ways of the hydrogen explosion safety ensuring is application of the hydrogen passive catalytic recombiners (PHR). The article presents the PHR semi-empirical model developed on the basis of the PHR mass and energy conservation laws. This model is elaborated by the black box principle, and does not require large computational resources for parameters determining inside the recombiner. The system of ordinary differential equations, which solution may be realized in the form of a subroutine, executed on each computational step of the CFD problem, is being used the thermo-physical processes description inside the PHR. The advantage of this approach consists in the possibility of accounting for various mechanisms of heat exchange between the PHR internal elements. Recombiner of the RECO-3 installation, for which a wide set of experimental data is available, is being employed for the accuracy evaluation of the developed model. The simple geometry of this recombiner allows applying well-known empirical relations to describe the heat transfer characteristics of the elements of this model. The presented approach may be employed to create the industrial PHR models, which are being used in computing the processes of hydrogen removal while the accidents development inside the sealed volume of the NPP power unit.

Keywords:

passive autocatalytic recombiner (PAR), engineering model

References

  1. Magdalena Orszulik, Adam Fic, Tomasz Bury CFD modeling of passive autocatalytic recombiners, NUKLEONIKA, 2015, Vol. 60(2), pp. 347‒353. DOI: 10.1515/nuka-2015-0050
  2. Matthias Heitsch Fluid dynamic analysis of a catalytic recombiner to remove hydrogen, Nuclear Engineering and Design, 2000, Vol. 201, pp. 1‒10. DOI: 10.1016/S0029-5493(00)00259-4
  3. Antoni Rożeń Modeling of a passive autocatalytic hydrogen recombiner — a parametric study, NUKLEONIKA, 2015, Vol. 60(1), pp. 161‒169. DOI: 10.1515/nuka-2015-0002
  4. Klauck M., Reinecke E., Kelm S., Meynet N., Bentaib A., Allelein H. Passive auto-catalytic recombiners operation in the presence of hydrogen and carbon monoxide: Experimental study and model development, Nuclear Engineering and Design, 2014, Vol. 266, pp. 137‒147. DOI: 10.1016/ j.nucengdes.2013.10.021
  5. Reinecke E., Tragsdorf I., Gierling K. Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors, Nuclear Engineering and Design, 2004, Vol. 230, pp. 49‒59. DOI: 10.1016/j.nucengdes.2003. 10.009
  6. Avdeenkov A.V., Sergeev VI.V., Stepanov A. V., Malakhov A.A. Math hydrogen catalytic recombiner: Engineering model for dynamic full-scale calculations, International Journal of Hydrogen Energy, 2018, Vol. 43, no. 52, pp. 23523‒23537. DOI: 10.1016/j.ijhydene.2018.10.212
  7. Reinecke E., Kelm S., Steffen P-M., Klauck M. Validation and application of the REKO-DIREKT code for the simulation of passive auto-catalytic recombiners operational behavior, Nuclear Technology, 2016, Vol. 196, pp. 355‒366. DOI: 10.13182/NT16-7
  8. Prabhudharwadkar D., Iyer K. Simulation of hydrogen mitigation in catalytic recombiner. Part-II: Formulation of a CFD model, Nuclear Engineering and Design, 2011, Vol. 241, pp. 1758‒1767. DOI: 10.1016/j.nucengdes.2011.01.013
  9. Tarasov O.V., Kiselev A.E., Filippov A.S., Yudina T.A., Grigoruk D.G., Koshmanov D.E., Keller V.D., Khristenko E.B. Razrabotka i verifikatsiya modeli rekombinatorov RVK-500, −1000 dlya modelirovaniya zashchitnoi obolochki AES s VVER metodami vychislitel’noi gidrodinamiki, Atomnaya energiya, 2016, Vol. 121, no. 3, pp. 131–136.
  10. Kirillov P.L., Yur’ev V.S., Bobkov V.P. Spravochnik po teplogidravlicheskim raschetam (Yadernye reaktory, teploobmenniki, parogeneratory) (Handbook of thermal-hydraulic calculations (nuclear reactors, heat exchangers, steam generators)), Moscow, Energoatomizdat, 1990, 360 p.
  11. Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi (Heat Transfer Basics), 2-d ed., Moscow, Energiya, 1977, 344 p.
  12. 12. Drinovac P. Experimental studies on catalytic hydrogen recombiners for light water reactors, Ph.D. thesis, RWTH Aachen, Aachen, Germany, 2006.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI