About the application of simplified mathematical models complex at the initial stage of the interplanetary spacecraft thermal design


Аuthors

Bugrova A. D., Kotlyarov E. Y.*, Shabarchin А. F.**, Finchenko V. S.

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: evgeny-1@list.ru
**e-mail: shaf@laspace.ru

Abstract

The example based on the rapid analysis of the payload temperature state of an interplanetary spacecraft intended for landing and operation on the surface of Venus, a purposeful application of a set of specially developed simplified thermal mathematical models is presented which were developed to estimate of the thermal control system main characteristics, as a spacecraft as a whole , as well as its constituent parts.

With the help of the computational experiments and analysises carried out in the article, the main initial data which is necessary for determination the composition and key performance of means of thermal control of the Venerian lander have been obtained. It is shown that during the whole operation of the spacecraft it is affected by external conditions that endure significant changes, which is why the project developers must use the very different and atypical technical solutions, to provide required thermal mode of payload and spacecraft equipment at all stages of operation.

Keywords:

lander, descent module, payload, temperature state, thermal control system, preliminary thermal analysis, thermal mathematical model, heat transfer units, operation stages

References

  1. Finchenko V.S., Kotlyarov E.Yu., Ivankov A.A. Sistemy obespecheniya teplovykh rezhimov avtomaticheskikh mezhplanetnykh stantsii (Thermal control systems of interplanetary space-crafts), in Efanov V.V., Finchenko V.S. (ed), Khimki: AO «NPO im. S.A.Lavochkina, 2018. 400 p.
  2. Marov M.Ya., Khantress U.T. Sovetskie roboty v Solnechnoi sisteme. Tekhnologii i otkrytiya (Soviet robots in the Solar System. Technologies and discoveries), Moscow, Fizmatlit, 2013. 610 p.
  3. Al’tov V.V., Zaletaev S.V., Kopyatkevich R.M. Raschet teplovogo rezhima kosmicheskikh apparatov v orbital’nom polete. Paket prikladnykh program «TERM» (Calculation of the thermal regime of spacecraft in orbital flight. TERM Application Software Package), № 4151, 18.10.2011, Korolev, FGUP TsNIIMash, 2011.
  4. Taylor F.W. The Scientific Exploration of Venus, University of Oxford, 32 Avenue of the Americas, New York, NY 10013-2473, USA, 2014. 332 p.
  5. Neudeck P., Meredith R., Chen Liang-Yu, Spry D., Nakley L., Hunter G. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions, AIP Advances, 2016. DOI: 10.1063/1.4973429
  6. Salazar D, Landis G.A., Colozza A.J. Non-Cooled Power System for Venus Lander, 12th International Energy Conversion, Cleveland OH, July 28–30, 2014. 14p.
  7. Bugrova A.D., Kotlyarov E.Yu., Finchenko V.S. Metodika predvaritel’nogo analiza teplovogo rezhima pribornoi paneli posadochnogo lunnogo modulya. Chast’ 1. Ekspress-analiz temperaturnogo sostoyaniya pribornoi paneli, Vestnik NPO im. S.A. Lavochkina, 2021, no. 2, pp. 25–35.
  8. Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmicheskogo apparata (Calculation of spacecraft heat transfer), Moscow, Mashinostroenie, 1979. 208 p.
  9. Finchenko V.S. Ustinov S.N., Luzhenkov V.V., KotlyarovE.Yu., Eremin I.V., Tyryshkin I.M. K voprosu ob izmenenii uglovogo polozheniya paneli SB s tsel’yu obespecheniya ee teplovogo rezhima, primenitel’no k KA «Intergeliozond», Teplovye protsessy v tekhnike, 2014, Vol. 6, no. 7, pp. 308–316.
  10. Bugrova A.D., Gurov R.I., KotlyarovE.Yu., Bondarenko V.A. Osobennosti postroeniya i funktsionirovaniya sistem termoregulirovaniya negermetichnykh pribornykh otsekov posadochnykh apparatov AO "NPO im. S.A. Lavochkina, Teplovye protsessy v tekhnike, 2021, Vol.13, no. 1, pp.12—23.
  11. Venus Mobile Explorer, Mission Concept Study Report to the NRC Decadal Survey Inner Planets Panel, December 18, 2009 Concept Maturity Level: 4, Cost Range: Low End Flagship GSFC, JPL, ARC. 35 р.
  12. Venus Flagship Mission Decadal Study Final Report, A Planetary Mission Concept Study Report Presented to the Planetary and Astrobiology Decadal Survey, Jet Propulsion Laboratory, California Institute of Technology 08 August 2020, 222 p.
  13. Alekseev V.A. Osnovy proektirovaniyateplovykh akkumulyatorov kosmicheskikh apparatov (Fundamentals of designing thermal accumulators of spacecraft), Kursk, Naukom, 2016. 248 p.
  14. Voeten R., Kotlyarov E., Raetz J.E., Ueda Yu. Mathematical Model of Life Science Glove-Box Thermal Control SubSystem (WVA) with using of EXCEL-BASIC, 34-ICES, Colorado Springs, 19–22 July, 2004. DOI:10.4271/2004-01-2360
  15. Kotlyarov E, Crom P., Voeten R. Some Aspects of Peltier- Cooler Optimization Applied for the Glove Box Air Temperature Control, 36-ICES, Norfolk, 17-20 July, 2006. DOI:10.4271/2006-01-2043
  16. Zelenov I.A. Zuev V.G., Kotlyarov E.Yu., Serov G.P., Konturnaya teplovaya truba, [Loop heat pipe], 4816028/06, 13.03.1990, Patent RF no 1834470, 1990, 10 р.
  17. Winton A.J., Schnorhk A., McCarthy C., Witting M., Sivac P., Eggel H., Pereira J., Marco Verna M. Venus Express: The Spacecraft, ESA Bulletin, 2005, V. 124, pp. 17–22.
  18. Nakamura M., Imamura T., Ishii N., Abe T., Satoh T., Suzuki M., Ueno M., Yamazaki A., Iwagami N., Watanabe S., Taguchi M., Fukuhara T., Takahashi Y., Yamada M., Hoshino N., Ohtsuki S., Uemizu K., Hashimoto G.L., Takagi M., Matsuda Y., Ogohara K., Sato N., Kasaba Y., Kouyama T., Hirata N., Nakamura R., Yamamoto Y., Okada N., Horinouchi T., Yamamoto M., Hayashi Y. Overview of Venus orbiter, Akatsuki, Earth Planets Space, 2011, Vol. 63, pp. 443–457.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI