Determination of thermal conductivity of polymers by the method of differential scanning calorimetry with temperature modulation


Аuthors

Khamidullin O. L.1*, Nizamiev R. R.1**, Balkaev D. A.2***, Amirova L. M.3****

1. Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia
2. Kazan Federal University, 35, Kremlevskaya str., Kazan, 420008, Russia
3. Institute of Aviation, Land Transport and Energy, KNRTU-KAI, 10, K. Marx str., Kazan, 420111, Russia

*e-mail: khamidullinoskarl@mail.ru
**e-mail: nizamiev64@mail.ru
***e-mail: dinar.balkaev@yandex.ru
****e-mail: amirovaliliyam@mail.ru

Abstract

This work was devoted to the analysis and testing of a new technique for determining the thermal conductivity of polymers by differential scanning calorimetry with temperature modulation. Determining the thermal conductivity of polymers is an important task facing engineers. To date, to determine the thermal conductivity of polymers, it is necessary to produce composite sample plates, which greatly increases the cost of measurements. However, this is not required for the method of differential scanning calorimetry with temperature modulation, since samples of several milligrams can be taken directly from the product, which is a great advantage of the method. In the course of the work, measurements of the thermal conductivity of various polymers and composites were performed. The undoubted advantage of the method is that measurements of the thermal conductivity of the composite can be carried out both in the longitudinal and transverse direction of reinforcement. However, the disadvantages of this method include the fact that the thermal conductivity of materials can be measured only in a very narrow temperature range from 0 to 90°C. This is due to the fact that at the moment either polystyrene or polymethylmethacrylate, which have low heat resistance, are used as a calibration material for thermal conductivity. It is possible that the replacement of these materials, for example, with refractory aluminum oxide Al2O3 can significantly increase the efficiency of the method. Also during the work it was revealed that to increase the accuracy of measurement, it is necessary to use clean laboratory gas and welldried samples.

Keywords:

thermal conductivity, temperature modulation, differential scanning calorimeter

References

  1. Speyer R.F. Thermal analysis of materials, New York, Marcel Dekker, Inc. 1994, 285 p.
  2. Solorzano E., Reglero J.A., Rodrıguez-Perez M.A., Lehmhus D., Wichmann M., De Saja J.A. An experimental study on the thermal conductivity of aluminium foams by using the transient plane source method, Heat Mass Transfer, 2008, Vol. 51, pp. 6259–6267.
  3. Assael M.J., Antoniadis K.D., Tzetzis D. The use of the transient hot-wire technique for measurement of the thermal conductivity of an epoxy-resin reinforced with glass fibers and/or carbon multi-walled nanotubes, Compos.Sci.Technol., 2008, Vol. 68, pp. 3178–3183.
  4. Parker W.J., Jenkins R.J., Butler C.P., Abbot G.L. Flash method of determining thermal diffusivity, heat capacity and thermal conductivity, J. Appl. Phys., 1961, Vol. 32, pp. 1679–1684.
  5. Cahill D.G. Thermal conductivity measurement from 30 to 750 K: the 3ω method, Rev. Sci. Instrum., 1990, Vol. 61, pp. 802–808.
  6. Govorkov S., Ruderman W., Horn M.W., Goodman R.B., Rothschild M.A. New method for measuring thermal conductivity of thin films, Rev. Sci. Instrum., 1997, Vol. 68, pp. 3828–3834.
  7. Jackson W.B., Amer N.M., Boccara A.C., Fournier D. Photothermal deflection spectroscopy and detection, Applied Optics, 1981, Vol. 20, pp. 1333–1344.
  8. Jeona P.S., Kima J.H., Kimb H.J., Yoob J. Thermal conductivity measurement of anisotropic material using photothermal deflection method, Thermochim. Acta., 2008, Vol. 477, pp. 32–37.
  9. Kuwahara M., Suzuki O., Takada S., Hata N., Fons P., Tominaga J. Thermal conductivity measurements of low-k films using thermoreflectance phenomenon, Microelectron. Eng., 2008, Vol. 85, pp. 796–799.
  10. Annual Book of ASTM Standards, E1952-98 Standard, Method for Thermal Conductivity and Thermal Diffusivity by Modulated Temperature Differential Scanning Calorimetry, ASTM International, West Conshohocken, PA.,US.
  11. Brennan W.P., Miller B., Whitewell J.C. Thermal Conductivity Measurements with the Diflerential Scanning Calorimeter, J. Appl. Polym. Sci., 1968, Vol. 21, pp. 1800–1802.
  12. Chiu J., Fair P.G Determination of thermal conductivity by differential scanning calorimetry, Thermochim. Acta., 1979, V. 34 (2), pp. 267–273.
  13. Hakvoort G., van Reijen L.L. Measurement of the thermal conductivity of solid substances by DSC, Thermochim. Acta., 1985, V. 93 (15), pp. 317–320.
  14. Boddington T., Laye P.G. The measurement of thermal conductivity by differential scanning calorimetry, Thermochimica Acta., 1987, Vol. 115, pp. 345–350.
  15. Khanna Y.P., Taylor T.J., Chomyn G. A new differential scanning calorimetry based approach for the estimation of thermal conductivity of polymer solids and melts, Polym. Eng. Sci., 1988, Vol. 28 (16), pp. 1034–1041.
  16. Keating M.Y., McLaren C.S. Thermal conductivity of polymer melts, Thermochimica Acta, 1990, Vol. 166, pp. 69–76.
  17. Ladbury J.E.S.D., Currell B.R., Horder J.R., Parsonage J.R., Vidgeon E.A. Application of DSC for the measurement of the thermal conductivity of elastomeric materials, Thermochimica Acta, 1990, Vol. 169, pp. 39–45.
  18. Marcus S.M., Blaine R.L. Thermal conductivity of polymers, glasses and ceramics by modulated DSC, Thermochimica Acta, 1994, Vol. 243 (2), pp. 231–239.
  19. Scherrenberg R., Mathot V., Steeman P. The applicability of TMDSC to polymeric systems. General theoretical description based on the full heat capacity formulation, Journal of Thermal Analysis, 1998, Vol. 54, pp. 477–499.
  20. Blaine R.L., Marcus S.M Derivation of temperature-modulated DSC thermal conductivity equations, Journal of Thermal Analysis, 1998, Vol. 54, pp. 467–476.
  21. Sindee L.Simon, Gregory B. McKenna. Measurement of Thermal Conductivity Using TMDSC: Solution to the Heat Flow Problem, Journal of Reinforced Plastics and Composites, 1999, Vol. 18 (6), pp. 559–571.
  22. Merzlyakov M., Schick C. Thermal conductivity from dynamic response of DSC, Thermochimica Acta, 2001, Vol. 377, pp. 183–191.
  23. Kalogiannakis G., Hemelrijck D.V., Assche G. Measurements of Thermal Properties of Carbon/Epoxy and Glass/Epoxy using Modulated Temperature Differential Scanning Calorimetry, Journal of Composite Materials, 2004, Vol. 38 (02), pp. 163–175.
  24. Volkan Cecen, Ismail H. Tavman, Mediha Kok, Yildirim Aydogdu. Epoxy- and Polyester-Based Composites Reinforced With Glass, Carbon and Aramid Fabrics: Measurement of Heat Capacity and Thermal Conductivity of Composites by Differential Scanning Calorimetry, Polymer Composites, 2009, Vol. 30 (9), pp. 1299–1311.
  25. Yannan Lin, Zhenqi Shi, Peter L.D. Wildfong. Wildfong. Thermal conductivity measurements for small molecule organic solid materials using modulated differential scanning calorimetry (MDSC) and data corrections for sample porosity, Journal of Pharmaceutical and Biomedical Analysis, 2010, Vol. 51, pp. 979–984.
  26. Lopes C.M.A., Felisberti M.I. Thermal conductivity of PET/(LDPE/AI) composites determined by MDSC, Polymer Testing, 2004, Vol. 23, pp. 637–643.
  27. Masson J-F., Bundalo-Perc S., Mukhopadhyaya P. Measurement of thermal conductivity of building insulation foams by modulated differential scanning calorimetry — critical review & observations, Int. Rev. Appl. Sci. Eng., 2012, pp. 157–162.
  28. Christian P. Camirand. Measurement of thermal conductivity by differential scanning calorimetry, Thermochimica Acta, 2004, Vol. 417, pp. 1–4.
  29. Lavrov I.V., Kochetygov A.A., Bardushkin V.V., Yakovlev V.B. Ob uchete kontaktnogo termosoprotivleniya mezhdu vklyucheniyami i matritsei pri prognozirovanii effektivnoi teploprovodnosti kompozitov, Teplovye protsessy v tekhnike, 2020, Vol. 12, no. 2, pp. 78–86.
  30. Lavrov I.V., Kochetygov A.A., Bardushkin V.V., Yakovlev V.B. Modelirovanie effektivnoi teploprovodnosti voloknistykh kompozitov s uchetom kontaktnogo termosoprotivleniya mezhdu vklyucheniyami i matritsei, Teplovye protsessy v tekhnike, 2021, Vol. 13, no. 3, pp. 135–144.
  31. Opredelenie teploprovodnosti i temperaturoprovodnosti metodom differentsial’noi skaniruyushchei kalorimetrii s temperaturnoi modulyatsiei, GOST R 57830-2017 (Composites. Determination of thermal conductivity and thermal conductivity by differential scanning calorimetry with temperature modulation, GOST R 57830-2017.), Moscow, Standartinform, 2019, available at: URL: https://docs.cntd.ru/document/1200157218 (accessed: 12/28/2021).

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI