Phase change material quantity analysis for lunar base thermal management system external loop


Аuthors

Belyavskiy A. E.

,

e-mail: 614kaf1@gmail.com

Abstract

This article presents the results of the phase change material quantity analysis for efficient functioning of the lunar base thermal management system (TMS) external loop. It is known that it is not possible to ensure the removal of the necessary quantity of heat from the lunar base habitable pressurized module using the external hydraulic loop of the module, formed by analogy with the TMS external hydraulic loops of the long-term space habitable orbital stations Mir and the International Space Station for most regions of the Moon, except for the polar zones. A solution to the problem based on removing excess heat from the lunar base module during the lunar day into the heat accumulator followed by its rejection into outer space during the lunar night is proposed. The article suggests using the local lunar regolith resource as a basis for heat accumulator phase change material. A description of the thermophysical properties of regolith is given and ways to improve these are proposed. The results of calculating the quantity of heat that needs to be removed to the heat accumulator from the lunar base module, depending on the latitude and the region of its location, are presented. It is proposed to use a mixture of regolith and water as the phase change material of a thermal accumulator and calculations of the required phase change material mass depending on the latitude and region (sea or mainland) of the lunar base location are carried out. The purpose of this paper is to explore the parameters of a thermal accumulator with regolith-based phase change material to ensure the thermal mode of the lunar base located in the middle latitudes and the equatorial zone.

Keywords:

heat accumulator, regolith-based phase change material, lunar base, thermal management system

References

  1. Legostaev V.P. (ed), Lopota V.A. (ed) Luna — shag k technologiyam osvoeniya Solnechnoi sistemy (The moon is a step towards technologies for the development of the Solar System), Moscow, RKK «Energiya», 2011, 584 p.
  2. Belyavskii A.E. Analiz raboty radiatsionnogo teploobmennika sistemy obespecheniya teplovogo rezhima lunnoi bazy, Teplovye protsessy v tekhnike, 2021, Vol.13, no. 6, pp. 135— 143. DOI: 34759/tpt-2022-14-3-135-143
  3. Florenskii K.P., Bazilevskii A.T., Nikolaeva O.V. Lunnyi grunt: svoistva i analogi (Lunar soil: properties and analogues), Moscow, Institut geokhimii i analiticheskoi khimii im. V.I. Vernadskogo, 1975, 50
  4. Houston W.N., Mitchell K., Carrier W.D.III. Lunar soil density and porosity, Abstracts of paper submitted to the 5 Lunar Science Conf., Houston, Texas, NASA, 1974, Vol. 1, pp. 363–365.
  5. Kuznetsov V.G. Oblomochnye gornye porody i metody ikh izucheniya: Uchebnoe posobie (Clastic rocks and methods of their study: A textbook), Moscow, RGU nefti i gaza, 2001, 133 p.
  6. Kuptsov S.M. Teplofizicheskie svoistva karbonatnykh porod, Izv. vuzov. Neft’ i gaz, 2004, no. 4, pp. 23–27.
  7. Strengwei W., Pirs G.W., Olhoft G.R. Magnitnye i dielektricheskie svoistva lunnykh obraztsov (Magnetic and dielectric properties of lunar samples), Translated by Eroshenko E.G., in Vinogradov A.P. (ed), Kosmokhimiya Luny i planet (Cosmochemistry of the Moon and planets), Moscow, Nauka, 1975, 728 p.
  8. Barsukov V.L. (ed) Peredvizhnaya laboratoriya na Lune. «Lunokhod-1» (A mobile laboratory on the moon. Lunokhod-1), Moscow, Nauka, 1978, 183
  9. Florenskii K.P., Bazilevskii T., Bobina N.N., Burba G.A., Grebennik N.N., Kuz’min R.O., Polosukhin V.P., Popovich V.D., Pronin A.A. Protsessy preobrazovaniya poverkhnosti Luny v raione Lemon’e po rezul’tatam detal’nogo izucheniya na «Lunokhode-2» (The processes of transformation of the Moon’s surface in the Lemonnier region based on the results of a detailed study on Lunokhod-2), in Peive A.V., Vinogradov A.P. (ed), Tektonika i strukturnaya geologiya. Planetologiya
  10. (Tectonics and structural geology. Planetology), Moscow, Nauka, 1976, pp. 205–235 (317).
  11. Bazilevskii A.T. Otsenka moshchnosti i stepeni pererabotki lunnogo regolita po rasprostranennosti kraterov, Kosmicheskie issledovaniya, 1974, Vol. 12, no. 4, pp. 606–609.
  12. Bondarenko N.V., Shkuratov Yu.G. Karta tolshchiny regolitovogo sloya vidimogo polushariya Luny po radiolokatsionnym i opticheskim dannym, Astronomicheskii vestnik, 1998, Vol. 32, no. 4, pp. 301–309.
  13. Bazilevskii A.T., Grebennik N.N., Gromov V.V., Dmitriev A.D., Kemurdzhian A.L., Polosukhin V.P., Semenov P.S., Florenskii K.P. Zavisimost’ fiziko-mekhanicheskikh svoistv lunnogo grunta ot osobennostei rel’efa i protsessov v raione rabot «Lunokhoda-2», Kosmicheskie issledovaniya, 1984, 12, no. 2, pp. 243–251.
  14. Kochnev K.V., Nenarokomov A.V. Modelirovanie teploobmena v simulyatore lunnogo regolita. Postanovka zadachi, Teplovye protsessy v tekhnike, 2021, 13, no. 6, pp. 264–268.
  15. Kochnev K.V., Nenarokomov V. Tekhnologii obrabotki lunnogo regolita dlya posleduyushchego ispol’zovaniya, Teplovye protsessy v tekhnike, 2020, Vol. 12, no. 6, pp. 242–251.
  16. Mitchell J.K., Houston W.N., Scott R.F., Costes N.C., Carrier W.D. III, Bromwell L.G. Mechanical properties of lunar soil: density, porosity, cohesion, and angle of friction, 3rd Lunar Sci. Conf., 1972, pp. 3235–3253.
  17. Aerov M.E., Todes O.M., Narinskii D.A. Apparaty so statsionarnym zernistym sloem (Devices with a stationary granular layer), Leningrad, Khimiya, 1979, 176
  18. Kunii D., Smith J.M. AIChE J., 1960, Vol. 6, no. 1, p.
  19. Alekseev A. Osnovy proektirovaniya teplovykh akkumulyatorov kosmicheskikh apparatov (Fundamentals of designing thermal accumulators of spacecraft), Kursk, Naukom, 2016, 248 p.
  20. Straus J.M. Fluid Mech., 1974, Vol. 64, no. 1, p. 51.
  21. Kudryavtseva S., Sadretdinova E.R. Geliosistema goryachego vodosnabzheniya dlya obitaemoi lunnoi bazy, Al’ternativnaya energetika i ekologiya, 2017, no. 7–9, pp. 21–33.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI