Experimental study of thermal and aerodynamic characteristics of transversely streamlined tube bundles with vortex generators


Аuthors

1, Popov I. A.1*, Zhukova Y. V.2, Marshalova G. S.2**, Khabibullin I. I.3***

1. Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia
2. A. V. Luikov Heat and Mass Transfer Institute of NAS of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus
3. "NIIturbocompressor n.a. V. B. Shnepp", Russia, 420029, Kazan, Sibirskiy trakt, 40

*e-mail: popov-igor-alex@yandex.ru
**e-mail: galiana.sidorik@icloud.com
***e-mail: rim3li490@mail.ru

Abstract

An experimental study of convective heat exchange of chess and corridor bundles of tubes with vortex generators applied to their surface in various layouts when the bundles flow around the air flow is carried out. Vortex generators are spherical dimples of relative depth h/d = 0.5, chess covering 50, 75 and 100% of the outer surface area of the tube. Various longitudinal and transverse steps of tubes in the bundle were considered. The hydraulic losses and total heat transfer of the considered bundles of tubes, as well as local heat transfer coefficients along the perimeter of the tubes in different rows of the bundle are determined. It has been found that the greatest thermal-hydraulic efficiency (of the order of 1.1) in chess bundle of tubes is characteristic of bundles of pipes with 100% coverage area by vortex generators; the lowest efficiency (0.95) is observed in a bundle of tubes with 50% coverage area by vortex generators. For the corridor layout of tubes, the highest thermal-hydraulic efficiency is 0.98–1.0 for tubes with 100% of the area of application of vortex generators; the lowest efficiency (on average 0.89) is for tubes with 50% and 75% of the area covered by vortex generators. The results obtained make it possible to develop recommendations for improving heat transfer surfaces consisting of bundles of round tubes, as applied to heat exchangers for various applications.

Keywords:

heat transfer, aerodynamic drag, tube bundle, efficiency, vortex generator

References

  1. Popov I.A., Makhyanov Kh.M., Gureev V.M. Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena: Intensifikatsiya teploobmena: monografiya (Physical foundations and industrial application of heat exchange intensification: Heat exchange intensification: monograph), in Gortyshov Yu.F. (ed). Kazan: Tsentr innovatsionnykh tekhnologii, 2009, 560 p.
  2. Eiffel G., Experiences sur la resistance de l’air. Comptes Rendus, 1903, vol. 137, pp. 30−32.
  3. Deeb R. Obobshchenie i analiz rezul’tatov poslednikh issledovanii v oblasti uluchsheniya kharakteristik teploobmena i gidrodinamiki pri poperechnom obtekanii gladkikh trub. Teplovye protsessy v tekhnike, 2021, vol. 13, no. 2, pp. 50–69.
  4. Pis’mennyi E.N. Effektivnye teploobmennye poverkhnosti iz ploskooval’nykh trub s nepolnym orebreniem. Teploenergetika, 2011, no. 4, pp. 7–12.
  5. Kuntysh V.B., Sukhotskii A.B., Piir A.E. Issledovanie teplootdachi i soprotivleniya shakhmatnykh puchkov vozdukhookhlazhdaemykh teploobmennikov iz trub s nakatnymi alyuminievymi rebrami razlichnoi vysoty. Khimicheskoe i neftegazovoe mashinostroenie, 2010, no. 12, pp. 3–7.
  6. Prandtl L. Regular and chaotic dynamics, Izhevsk, SIC Hydroaeromechanika, 2000, 576 p.
  7. Landau L. D., Lifshits E. M. Hydrodynamics. Theoretical Physics. Moscow: Nauka, 1986, vol. 6, 736 p.
  8. Yurchenko N., River R., Pavlovsky R. Control of the profile aerodynamics using streamwise vortices generated in a boundary layer. Proc. World Congress «Aviation in the XXI-st Centary», Kyiv, 2003, pp. 14–16.
  9. Kalinin E.K., Dreitser G.A., Kopp I.Z., Myakotchin A.S. Efficient Surfaces for Heat Exchangers Fundemantabs and design. New-York, 2002, 414 p.
  10. Gortyshov Yu.F., Popov I.A., Olimpiev V.V., Shchelchkov A.V., Kas’kov S.I. Teplogidravlicheskaya effektivnost’ perspektivnykh sposobov intensifikatsii teplootdachi v kanalakh teploobmennogo oborudovaniya. Intensifikatsiya teploobmena: monografiya (Thermohydraulic efficiency of promising methods of heat transfer intensification in the channels of heat exchange equipment. Intensification of heat exchange: monograph), in Gortyshov Yu.F. (ed). Kazan: Tsentr innovatsionnykh tekhnologii, 2009, 531 p.
  11. Isaev S.A., Baranov P.A., Gortyshov Yu.F., Guvernyuk S.V., Mazo A.B., Smurov M.Yu., Sudakov A.G., Usachov A.E., Kharchenko V.B. Aerodynamics of thickened bodies with vortex cells. Numerical and physical modeling. St. Petersburg: Polytech University Publishing House, 2016, 215 p.
  12. Chang P.K. Separation of Flow. London: Pergamon Press, 1970, 760 p.
  13. Roshko A. On the drag and shedding frequency of bluff cylinders. Nat. Adr. Comm. Aero., Wash., Tech, 1954, pp. 3169.
  14. Igarashi T., Correlation between heat transfer and fluctuating pressure in separated region of a circular cylinder. International Journal of Heat and Mass Transfer, 1984, vol. 27, no. 6, pp. 927–937.
  15. Zhdanov V., Kukharchuk I., Terekhov V. Velocity field behind a plate installed in the inner region of a turbulent boundary layer. Journal of Engineering Physics and Thermophysics, 2020, vol. 93, no. 5, pp. 1233–1239.
  16. Dyachenko A.Yu., Zhdanov V.L., Smulsky Ya.I., Terekhov V.I. Experimental study of heat transfer in the separation region behind the reverse ledge in the presence of tabs. Thermophysics and Aeromechanics, 2019, vol. 26, no. 4, pp. 549–560.
  17. Baranova T.A., Zhdanov V.L., Zhukova Yu.V., Isaev S.A. Reduction of Resistance and Heat Transfer Enhancement in Flow Past a Cylinder with Jet and Vortex Generators. Heat Transfer Research, 2010, vol. 41, no. 4, pp. 401–411.
  18. Zukauskas A. A. Convective transfer in heat exchangers. Moscow: Mir, 1982, 472 p.
  19. Baranova T.A., Danil’chik E.S., Zhukova Yu.V., Kadyrov R.G., Marshalova G.S., Mironov A.A., Popov I.A., Skrypnik A.N., Chornyi A.D. Coprotivlenie i teploobmen odinochnoi truby s poverkhnostnymi generatorami vikhrei. Teplovye protsessy v tekhnike, 2021, vol. 13, no. 11, pp. 495–508.
  20. Kiknadze G.I., Gachicheladze I.A., Alekseev V.V. Samoorganizatsiya smercheobraznykh strui v potokakh vyazkikh sploshnykh sred i intensifikatsiya teploobmassoobmena, soprovozhdayushchaya eto yavlenie (Self-organization of tornado-like jets in flows of viscous continuous media and intensification of heat and mass transfer accompanying this phenomenon). Moscow: Izdatel’stvo MEI, 2005, 84 p.
  21. Belen’kii M.Ya., Gotovskii M.A., Lekakh B.M., Fokin B.S., Khabenskii V.B. Eksperimental’noe issledovanie teplovykh i gidravlicheskikh kharakteristik teploobmennykh poverkhnostei, formovannykh sfericheskimi lunkami. TVT, 1991, vol. 29, no. 6, pp. 1142–1147.
  22. Bystrov Yu.A., Isaev S.A., Kudryavtsev N.A., Leont’ev A.I. Chislennoe modelirovanie vikhrevoi intensifikatsii teploobmena v paketakh trub (Numerical simulation of vortex intensification of heat transfer in pipe packages). Saint-Petersburg: Sudostroenie, 2005, 392 p.
  23. Chudnovsky Ya., Kozlov A. Heat transfer enhancement and fouling mitigation potential due to dimpling the convective surfaces. International Heat Transfer Conference, no HTE—21. Sidney, 2006, 10 p.
  24. Chudnovsky Ya. Vortex Heat Transfer Enhancement for Chemical Industry Fired Heaters. 2004 AIChE Spring Technical Meeting, New Orleans, 2004.
  25. Zhukauskas A.A., Makaryavichyus V. I., Shlanchyauskas A.A. Teplootdacha puchkov trub v poperechnom potoke (Heat transfer of pipe bundles in a transverse flow). Vilnus: Mintis, 1968, 191 p.
  26. Kuznetsov N.V., Shcherbakova A.V., Titova E.Ya. Novye raschetnye formuly dlya soprotivleniya poperechno-obtekaemykh trubnykh puchkov. Teploenergetika, 1954, no. 9, pp. 27–32.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI