Аuthors
Firsanov V. V.1*,
Nguyen L. H.1**,
Tran N. D.2***
1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Le Quy Don Technical University, 236, Hoang Quoc Viet, Ha Noi, Viet Nam
*e-mail: k906@mai.ru
**e-mail: lehung.mai@mail.ru
***e-mail: ngocdoanmai@gmail.com
Abstract
This paper presents the refined theory of multilayer cylindrical shells in order to increase the reliability of the results that calculate the stress-strain state in the edge zones under the combined action of thermoelectromechanical loads. The displacements of the shell are represented as polynomials along the coordinate normal to the middle surface, two degrees higher than in the classical theory of the Kirchhoff — Love type. The proposed mathematical model of the stress-strain state for shells is based on the Lagrange variational principle. The solution of the formulated boundary value problem is carried out using trigonometric Fourier series and Laplace’s operational method. An example of calculating the stress state of multilayer cylindrical shells rigidly clamped at the edges under the action of mechanical loading, thermal heating and electric field is given. Comparison of the results of calculations with the data of the classical theory is presented, and the presence of stresses of the «boundary layer» type near the rigidly fastened edges of the shell is shown.
Keywords:
composite cylindrical shell, thermoelectroelasticity, stress-strain state, Lagrange variational principle, boundary layer, edge effect
References
- Alan Baker, Stuart Dutton, Donald Kelly. Composite Materials for Aircraft structures. American Institute of Aeronautics and Astronautics, Inc. Reston, 2004, 603 p.
- Grinchenko V.T., Ulitko A.F., Shul’ga N.A. Elektrouprugost’ (Electroelasticity). Kyiv: Naukova dumka, 1989, 280 p. (In Russ.).
- Alfutov N.A., Zinov’ev P.A., Popov B.G. Raschet mnogosloinykh plastin i obolochek iz kompozitsionnykh materialov [Calculation of multilayer plates and shells from composite materials]. Moscow: Mashinostroenie, 1984, 262 p. (In Russ.).
- Benjeddou A. Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Computers and Structures, vol. 76, 2000, pp. 347–363.
- Reddy J.N. Mechanics of laminated composite plates and shells: theory and analysis, 2nd ed, CRC Press, 2003, 858 p.
- Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. New York: McGraw-Hill, 1959, 591 p.
- Friedrlchs K.O. Kirchoffs boundary conditions and the edge effect for elastic Plates. Proceedings of Symposia in Applied Mathematics, 1950, vol. 3, pp. 117–124.
- Firsanov V.V, Zoan K.H. Kraevoe napryazhennoe sostoyanie krugloj plastiny peremennoj tolshchiny pri termomekhanicheskom nagruzhenii na osnove utochnennoj teorii [Edge stress state of a round plate of variable thick-ness under thermomechanical loading on the basis of an improved theory]. Teplovye protsessy v tekhnike, 2020, vol. 12, no. 1, pp. 39–48. (In Russ.). DOI: 10.34759/tpt-2020-12-1-39-48
- Firsanov V.V., Nguyen L.H. Napryazhennoe sostoyanie cilindricheskih obolochek pod dejstviem proizvol’nyh nagruzok s uchetom p’ezoeffekta [Stress state of cylindrical shells under the action of arbitrary loads, taking into account the piezoelectric effect]. Problemy prochnosti i plastichnosti, 2020, vol. 82, no. 4, pp. 483–492. (In Russ.). DOI: 10.32326/1814-9146-2020-82-4-483-492
- Firsanov V.V., Doan T.N. Investigation of the statics and free vibrations of cylindrical shells on the basis of a non-classical theory. Composites: Mechanics, Computations, Applications: An International Journal. 2015, vol. 6, no. 2, pp. 135–166.
- Parton V.Z., Kudryavtsev B.A. Elektromagnitouprugost’ p’ezoelektricheskikh i elektroprovodnykh tel [Electromagnetoelasticity of piezoelectric and electrically conductive bodies]. Moscow: Nauka, 1998, 470 p. (In Russ.).
- Kovalenko A.D. Osnovy termouprugosti [Fundamentals of thermoelasticity]. Kyiv: Naukova dumka, 1970, 309 p. (In Russ.).
- Alashti R.A., Khorsand M. Three-dimensional thermoelastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method. International Journal of Pressure Vessels and Piping, 2011, vol. 88, pp. 167–180.
- Vasil’ev V.V., Lur’e S.A. K probleme utochneniya teorii pologikh obolochek. Izvestiya AN SSSR. Mekhanika tverdogo tela, 1990, no. 6, pp. 139–146. (In Russ.).
- Ambartsumyan S.A. Teoriya anizotropnykh plastin [Theory of anisotropic plates]. Moscow, Nauka, 1967, 268 p.