Аuthors
Altunin K. V.
Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia
e-mail: altkonst881@yandex.ru
Abstract
The article explores the electrostatic fields and deposit formation in a medium of liquid hydrocarbon such as kerosene. A review of references makes it possible to state that application of electric fields is an effective way of heat transfer intensification. The article highlights the problem of deposit formation. In general, deposit formation depends on many factors including a period of work of a heat engine or a power plant, a content of metal wall, temperature of a wall and fluid, geometry of channels, etc. It’s known that deposit formation may result in overheating a fuel-delivery system channel and other unpleasant outcome for heat engines or power plants. The existing methods of combating deposit formation are economically unprofitable and environmentally impractical. One of the promising ways to prevent and limit the further growth of carbon-containing deposits is the successful usage of electrostatic fields.
The analysis of scientific, technical and patent-licensed literature revealed the absence of a general method for calculating heat transfer during one-time processes, including electric convection, deposit formation. A dimensionless similarity number of deposit formation with influence of its thermal and electric nature was also not found which eventually could be effectively used to describe convective phenomena in different media.
The article presents diagrams of a working area with electrostatic fields and an experimental setup for studying the features of heat transfer to liquid hydrocarbon heat carriers under natural convection. The influence of electrostatic fields on the effective prevention of deposit formation in the kerosene medium and the intensification of heat exchange when using electrodes in the form of coaxial needles is considered.
The article, based on the analysis of dimensions, obtains two new similarity criteria including the number of electroconvection and the number of deposit formation. The generalization of experimental studies was made in the form of a new criterion equation based on the created similarity criteria of heat transfer and taking into account possible porosity of hydrocarbon deposits.
The new method for calculating the heat transfer coefficient under the combined influence of deposit formation and electric convection is presented here. The article contains formulas, figures and tables for a better understanding of the results of experimental and theoretical investigations.
The research results indicate that it is just possible to calculate accurately the Nusselt number and the heat transfer coefficient using new similarity criteria. The materials of the article can be used in the further calculations of heat transfer in different hydrocarbon media.
Keywords:
electric convection, similarity number, kerosene, sedimentation
References
- Ostroumov G.A. Elektricheskaya konvektsiya (obzor). Inzhenerno-fizicheskii zhurnal, 1966, vol. 10, no. 5, pp. 683–695. (In Russ.)
- Savinykh B.V., Gumerov F.M. Svoistva perenosa dielektricheskikh zhidkostei i teplomassoobmen v elektricheskikh polyakh [Properties of transfer of dielectric liquids and heat and mass transfer in electric fields]. Kazan’, 2002, 384 p. (In Russ.)
- Il’in V.A., Ponomareva L.A. Elektrokonvektsiya slaboprovodyashchei zhidkosti v vysokochastotnom elektricheskom pole. Vestnik Permskogo universiteta, Seriya: Fizika, 2013, no. 3 (25), pp. 28–36. (In Russ.)
- Altunin V.A. Issledovanie vliyaniya elektrostaticheskikh i magnitnykh polei na osobennosti teplootdachi k uglevodorodnym goryuchim i okhladitelyam. Kniga vtoraya [Investigation of the influence of electrostatic and magnetic fields on the peculiarities of heat transfer to hydrocarbon fuels and coolers. Book two]. Kazan’: Izdatel’stvo «Kazanskii gosudarstvennyi universitet im. V.I. Ul’yanova-Lenina», 2006, 230 p. (In Russ.)
- Altunin K.V., Altunin V.A., Gortyshov Yu.F., Galimov F.M., Dresvyannikov F.N., Yanovskaya M.L. Sposoby bor’by s osadkoobrazovaniem v energoustanovkah na zhidkih uglevodorodnyh goryuchih i okhladitelyah. Energetika Tatarstana, 2010, no. 3, pp. 43–51. (In Russ.)
- Yanovskii L.S., Dmitrenko V.P., Dubovkin N.F., Galimov F.M., Shevchenko I.V. Osnovy aviatsionnoi khimmotologii: ucheb. posobie [Fundamentals of aviation Chemmotology: textbook. Stipend]. Moscow: MATI, 2005, pp. 85–86. (In Russ.)
- Yanovskii, L.S., Ivanov V.F., Galimov F.M., Sapgir G.B. Koksootlozheniya v aviatsionnykh i raketnykh dvigatelyakh [Coke deposits in aircraft and rocket engines]. Kazan: Abak, 1999, 284 p. (In Russ.)
- Kalghatgi G.T. Combustion chamber deposits in spark-ignition engines: a literature review, SAE, 1995, Paper No.: 952443.
- Karamangil M.I., Avci A., Bilal H. Investigation of the effect of different carbon film thickness on the exhaust valve. Heat Mass Transfer, 2008, no. 44, pp. 587–598.
- Altunin K.V. Razrabotka novykh kriteriev podobiya teploobmena. Innovatsionnye nauchnye issledovaniya, 2022, no. 5–2 (19), pp. 27–34. (In Russ.)
- Bukhmirov V.V. Raschet koeffitsienta teplootdachi (spravochnik) [Calculation of the heat transfer coefficient (reference book)]. Ivanovo: Ivanovskii gosudarstvennyi energeticheskii universitet im. V.I. Lenina, 2007, 37 p. (In Russ.)
- Bolgarskii A.V., Mukhachev G.A., Shchukin V.K. Termodinamika i teploperedacha [Thermodynamics and heat transfer]. Moscow: Vysshaya shkola, 1964, 458 p. (In Russ.)
- Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha [Heat transfer]. Moscow: Energiya, 1965, 424 p. (In Russ.)
- Altunin K.V. Razrabotka kriteriev podobiya elektrokonvektsii v uglevodorodnykh sredakh. Izvestiya vysshikh uchebnykh zavedenii. Problemy energetiki, 2012, no. 1–2, pp. 168–171. (In Russ.)
- Dubovkin N.F., Malanicheva V.G., Massur Yu.P., Fedorov E.P. Fiziko-khimicheskie i ekspluatatsionnye svoistva reaktivnykh topliv: Spravochnik [Physico-chemical and operational properties of jet fuels: Handbook]. Moscow: Khimiya, 1985, 240 p. (In Russ.)