Experimental study of high-frequency ion thruster with discharge chamber operation imitation in the straight-flow mode


Аuthors

Gordeev S. V.*, Mel'nikov A. V.**, Khartov S. A.***

*e-mail: svyatoslavgordeev@mail.ru
**e-mail: k208@mai.ru
***e-mail: skhartov@ya.ru

Abstract

The article presents description of the laboratory sample experimental study results of the high-frequency ion thruster with straight-flow configuration of the discharge chamber. Structural arrangement of the sample allowed media parameters creating in the operation area close to the conditions evolving while the straight-flow electrojet thruster operation on the low orbit. The studies were being performed at various transparency levels of the entrance boundary of the atmospheric gases inlet device. Diameter of the ion beam being extracted was 50 mm. Integral characteristics of the sample while its running from the bench power sources were obtained. With given standard size of the thruster the thrust of up to 1 mN was achieved when running on nitrogen. The experimental dependencies of the consumed high-frequency power on the working body flow rate for various values of the ion beam current presented in the article may be applied while designing the atmospheric gases intake device for such type of thrusters. The thermal state assessment of the discharge chamber state was performed as well. Maximum calculated temperature in the chamber was 770 K.

Keywords:

straight-flow electric engine, radio-frequency ion thruster, discharge chamber, ion-optical system, atmospheric gases intake device

References

  1. Erofeev A.I., Suvorov M.O., Nikiforov A.P., Syrin S.A., Popov G.A., Khartov S.A. Razrabotka vozdushnogo pryamotochnogo elektroreaktivnogo dvigatelya dlya kompensatsii aerodinamicheskogo tormozheniya nizkoorbital’nykh kos micheskikh apparatov [Development of Air-Electrorocket Ramjet for Compensating of Low-Orbit Spacecrafts Aerodynamic Drag]. Vestnik NPO imeni S.A. Lavochkina, 2016, no. 3, pp. 104–110.

  2. Corbett M.H., Edwards C.H. Thrust Control Algorithms for the GOCE Ion Propulsion Assembly. 30th International Electric Propulsion Conference (IEPC-2007-210). Italy, September 17–20, 2007, pp. 1–10.

  3. Nishiyama K. Air breathing ion engine concept. 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law (IAC-03- S4-02). Bremen, 29 September — 3 October, 2003, p. 1. URL: https://doi.org/10.2514/6.IAC-03-S.4.02

  4. Erofeev A.I., Filatyev A.S., Golikov A.A., Khartov S.A., Nikiforov A.P., Popov G.A., Suvorov M.O., Yanova O.V. Pryamotochnye vozdushnye elektroreaktivnye dvigateli dlya dlitel’nykh poletov aerokosmicheskikh apparatov na sverkhnizkikh orbitakh [Air-Breathing Electric Propulsion for Long- Term Flights in Very Low Earth Orbits]. International Conference on High-Speed Vehicle Science and Technology, Moscow, 26–29 November 2018.

  5. Gordeev S.V., Filatyev A.S., Khartov S.A., Popov G.A., Suvorov M.O. The concept of a ramjet electric propulsion for a low-orbit spacecraft. IAA/AAS Scitech Forum 2019 on Space Flight Mechanics and Space Structures and Materials, Advances in The Astronautical Sciences, 2019, vol. 174, pp. 245–256, IAA-AAS-SciTech2019-027 AAS 19-967.

  6. Erofeev A.I., Nikiforov A.P., Plugin V.V. Eksperimental’nye issledovaniya vozdukhozabornika v svobodnomolekulyarnom potoke gaza [Experimental investigation of the air inlet in free molecular gas flow]. Uchenye zapiski TSAGI, vol. XLVIII, no. 3, 2017, pp. 56–69.

  7. Goebel D.M. Analytical Discharge Model for RF Ion Thrusters. IEEE Transactions on Plasma Science, 2008, vol. 36, no. 5, pp. 2111–2121.

  8. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 2002. vol. 107, no. A12, 1468, pp. 1–16.

  9. Feili D., Lotz B., Meyer B. et al. Testing and Comprehensive Modeling of a GIE Utilizing Atmospheric Propellants. Proc. of 33rd International Electric Propulsion Conference (IEPC- 2013-354). The George Washington University, Washington, D.C., 6–10 October, 2013, pp. 1–15.

  10. Koshmarov Yu.A., Ryzhov Yu.A. Prikladnaya dinamika razrezhennogo gaza [Applied rarefied gas dynamics]. Moscow, Mashinostroenie, 1977, p. 184.

  11. Gordeev S.V., Kanev S.V., Melnikov A.V., Nazarenko I.P., Khartov S.A. Issledovanie vysokochastotnogo ionnogo dvigatelya s pryamotochnoi konfiguratsiei razryadnoi kamery [Investigation of a radio-frequency ion thruster with a ramjet discharge chamber]. Engineering Journal: Science and Innovation, 2022, no. 5, pp. 1–13. URL: http://dx.doi.org/10.18698/2308-6033-2022-5-2179

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI