The article represents a numerical analysis of a new energy separation method. By energy separation, the authors imply spontaneous gas flow separation into the two flows with stagnation temperatures higher and lower than the initial one («hot» and «cold»). One of the most famous devices, where the energy separation phenomenon is employed, is the Rank-Hilsch vortex tube. The method under consideration is based on the well-known effect of the stagnation temperature profile curvature over the boundary layer thickness, originated when a high-speed gas flows around an adiabatic surface. It is well known, that the higher the flow velocity and the more the Prandtl number differs from unity, the higher is the energy separation within the boundary layer. In a channel with a permeable wall, the part of the high-speed flow may be sucked out through the wall due to the natural or forced pressure drop. As the result, the flow stagnation temperatures at the channel outlet and the flow sucked out through the wall are different, namely, one is hotter and the other is colder, compared to the initial stagnation temperature.
The authors studied the injection/suction law impact on the energy separation based on the developed 2D numerical model. The two laws were considered, namely the Darcy-Forchhämer equation and the law of suction constant along the length.
Comparison of both local and integral energy separation characteristics was made. The article demonstrates that the best results were obtained in the case of constant suction along the channel length at the lowest possible initial stagnation pressure. The authors analyzed the efficiency of the device under consideration the same way as the vortex tube was.
Eckert E.R.G. Cross transport of energy in fluid streams. Wärmeund Stoffübertragung, 1987, vol. 21, no. 2–3, pp. 73–81. DOI: 10.1007/bf01377562
Ranque G.J. Experiences sur la detente giratoire avec productions simultanees d’un echappement d’air chand et d’un echappemen d’air froid. Journal de physique et le radium, 1933, no. 4(7), pp. 112–114.
Han B., Goldstein R.J. Instantaneous energy separation in a free jet – part II. Total temperature measurement. International Journal of Heat and Mass Transfer, 2003, vol. 46, no. 21, pp. 3983–3990. DOI: 10.1016/S0017-9310(03)00244-8
Sprenger H.S. Über thermische effekte bei reseonanzrohren. Mitteilungen aus dem Institut für Aerodynamik ETH, 1954, vol. 21, pp. 18–35.
Eckert E., Weise W. Messungen der temperaturverteilung auf der oberfläche schnell angeströmter unbeheizter körper. Forschung auf dem Gebiet des Ingenieurwesens A, 1942, vol. 13, no. 6, pp. 246–254. DOI: 10.1007/BF02585343
Aleksyuk A.I. Oblasti ponizhennoj polnoj ental'pii v blizhnem slede za telom v potoke vjazkogo gaza [Regions of reduced total enthalpy in the near wake of a body in a viscous gas flow]. Izvestija Rossijskoj akademii nauk. Mehanika zhidkosti i gaza, 2022, no 1, pp. 69–80. DOI: 10.31857/s0568528122010017
Pohlhausen E. Der wärmeaustausch zwischen festen körpern und flüssigkeiten mit kleiner reibung und kleiner wärmeleitung. ZAMM – Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 1921, vol. 1, no. 2, pp. 115–121. (In Russ.). DOI: 10.1002/ zamm.19210010205
Leont'ev A.I. Temperature stratification of supersonic gas flow. Doklady Akademii nauk, 1997, vol. 42, no. 6, pp. 30–311.
Vigdorovich I.I., Leont’ev A.I. Theory of the energy separation of a compressible gas flow. Fluid Dynamics, 2010, vol. 45, no. 3, pp. 434–440. DOI: 10.1134/S0015462810030105
Leontiev A.I., Zditovets A.G., Vinogradov Y.A., Strongin M.M., Kiselev N.A. Experimental investigation of the machine-free method of temperature separation of air flows based on the energy separation effect in a compressible boundary layer. Experimental Thermal and Fluid Science, 2017, vol. 88, pp. 202– 219. DOI: 10.1016/j.expthermflusci.2017.05.021
Khazov D.E. Chislennoe issledovanie bezmashinnogo energorazdelenija vozdushnogo potoka [Numerical investigation of the nonmachine air stream energy separation]. Thermal Processes in Engineering, 2018, vol. 10, no. 1–2, pp. 25–36.
Makarov M.S., Makarova S.N. The influence of the supersonic nozzle length on the efficiency of energy separation of low-Prandtl gas flowing in the finned single Leontiev tube. Journal of Physics: Conference Series, 2020, vol. 1675. 012011. DOI: 10.1088/1742-6596/1675/1/012011
Vigdorovich I.I., Leont’ev A.I. Energy separation of gases with low and high Prandtl numbers. Fluid Dynamics, 2013, vol. 48, no. 6, pp. 811–826. DOI: 10.1134/S0015462813060124
Leontiev A.I., Lushchik V.G., Yakubenko A.E. The recovery factor in a supersonic flow of gas with a low Prandtl number. High Temperature, 2006, vol. 44, no. 2, pp. 234–242. DOI: 10.1007/s10740-006-0029-8
Leont’ev A.I., Osiptsov A.N., Rybdylova O.D. The boundary layer on a flat plate in a supersonic-gas-droplet flow: Influence of evaporating droplets on the temperature of the adiabatic wall. High Temperature, 2015, vol. 53, no. 6, pp. 866–873. DOI: 10.1134/S0018151X15060164
Golubkina I.V., Osiptsov A.N. The effect of admixture of non-evaporating droplets on the flow structure and adiabatic wall temperature in a compressible two-phase boundary layer. Fluid Dynamics, 2019, vol. 54, no. 3, pp. 349–360. DOI: 10.1134/S0015462819030042
Zditovets A.G. Еksperimental'noe issledovanie javlenija temperaturnogo razdelenija vozdushnogo potoka, istekajushhego cherez sverhzvukovoe soplo, s central'nym telom v vide poristoj pronicaemoj trubki [Experimental study of the tempera ture separation of an air flow flowing through a supersonic nozzle with a central body in the form of a porous permeable tube]. Konkurs molodykh uchenykh Nauchno-issledovatel'skogo instituta mekhaniki MGU (13–15 oktyabrya 2010): sbornik trudov konferentsii. Moscow, 2011, pp. 128–136. (In Russ.)
Leontiev A.I., Zditovets A.G., Kiselev N.A., Vinogradov Y.A., Strongin M.M. Experimental investigation of energy (temperature) separation of a high-velocity air flow in a cylindrical channel with a permeable wall. Experimental Thermal and Fluid Science, 2019, vol. 105, pp. 206–215. (In Russ.). DOI: 10.1016/j.expthermflusci.2019.04.002
Leont’ev A.I., Lushchik V.G., Makarova M.S. Temperature Stratification under Suction of a Boundary Layer from a Supersonic Flow. High Temperature, 2012, vol. 50, no. 6, pp. 739–743. DOI: 10.1134/S0018151X12060065
Khazov D.E., Leontiev A.I., Zditovets A.G., Kiselev N.A., Vinogradov Yu.A. Energy separation in a channel with permeable wall. Energy, 2022, vol. 239. 122427. DOI: 10.1016/ j.energy.2021.122427
Kays W.M., Crawford M.E. Convective heat and mass transfer. McGraw-Hill Ryerson, Limited, 1980, 420 p.
Leontiev A.I., Volchkov E.P. and Lebedev V.P. Teplovaja zashhita stenok plazmotronov. Nizkotemperaturnaja plazma [Thermal protection of plasmatron walls. Low-Temperature Plasma]. Vol. 15. Novosibirsk, Institute of Thermal Physics SO RAN, 1995, 336 p.
Belov S.V. Poristye metally v mashinostroenii [Porous metals in mechanical engineering]. Moscow, Mashinostroenie, 1981, 247 p.
Vulis L.A. Termodinamika gazovyh potokov [Thermodynamics of gas flows]. Moscow, Leningrad, Gosjenergoizdat, 1950, 304 p.
Kutateladze S.S., Leontiev A.I. Heat transfer, mass transfer, and friction in turbulent boundary layers. New York, Hemisphere Publishing Corporation, 1990, 302 p.
Hilsch R. The use of the expansion of gases in a centrifugal field as cooling process. Review of Scientific Instruments, 1947, vol. 18, no. 2, pp. 108–113, DOI: 10.1063/1.1740893
Suslov A.D., Ivanov S.V., Murashkin A.V., Chizhikov Ju.V. Vihreаvye apparaty [Vortex devices]. Moscow, Mashinostroenie, 1985, 256 p.
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |