Specifics of heat exchange parameters computing on the surface of aerotechnics employing Data Science toolkit


Аuthors

Matkovskiy N. O.1, 2*, Tishkov V. V.1**, Gusev A. N.1***, Ermolaev A. Y.1, 2****

1. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
2. Toropov Machine-Building Design Bureau "Vimpel", 90, Volokolamskoe shosse, Moscow, 125424, Russia

*e-mail: matkovskiyno@yandex.ru
**e-mail: tishkovvv@mai.ru
***e-mail: kaf701mai@mail.ru
****e-mail: erm_a@mail.ru

Abstract

Active development of aviation robotic systems leads to the complexity increase of the design and research processes of the said objects. The aerotechnics objects (ATO) being developed require solving the issues of increased external physical impacts, which entails setting complex mathematical problems requiring computation and big data analysis.

The authors propose the technique for heat transfer coefficients computing, realized in the Python programming language, employing toolkits for the data analysis, such as Pandas and Matplotlib. The Data Science toolkit application in technical studies significantly reduces computing time, searching and analysis of possible errors due to the ease of use of big data visualization tools, capability of reducing a data array to the convenient file format and syntactical simplicity of the programming language in use.

Temperature distribution on the ATO the parabolic surface, simulated by the computed values of the heat transfer coefficients demonstrates sufficient convergence with the result of the experiment.

Keywords:

Heat exchange, DataFrame, effective length method, heat flux

References

  1. Jordan Y.V., Davydovich D.Y., Zharikov K.I., Dron M.M. Ehksperimental’nye issledovaniya teplovogo nagruzheniya ehlementa golovnogo obtekatelya rakety na atmosfernom uchastke traektorii ego spuska [Experimental researches of thermal loading of a rocket head fairing element in the atmospheric section of its descent trajectory]. Dynamics of systems, mechanisms and machines, 2017, vol. 5, no. 2, pp. 37–42. (In Russ.). DOI: 10.25206/2310-9793-2017-5-2-37-42

  2. Matkovskiy N.O., Agishev R.Yu. Metodika rascheta parametrov teploobmena v nestatsionarnoi postanovke pri obtekanii tel slozhnoi formy [Calculation of heat transfer parameters in a non-stationary setting bodies of complex shape]. XIII Vserossiiskii mezhotraslevoi molodezhnyi konkurs nauchno-tekhnicheskikh rabot i proektov “Molodezh’ i budushchee aviatsii i kosmonavtiki”: sbornik annotatsii konkursnykh rabot. Moscow, 2021. pp. 149–150. (In Russ.)

  3. Amudsen R.M., Leonard C.P., Bruce W.E. Hyper-X hot structure comparison of thermal analysis and flight data. 15 Thermal and Fluid Analysis Workshop (TFAWS). 30 August 2004, Pasadena, California, 24 p. URL: https://tfaws.nasa.gov/TFAWS04/Website/program/paper/TFAWS04_RAmundsen_Aero_CFD.pdf  (date of application: 19.09.2022).

  4. Borovoy B.Ya. Eksperimental’nye issledovaniya teploobmena i teplozashchity giperzvukovykh letatel’nykh apparatov [Experimental researches of heat exchange and thermal protection of hypersonic aircraft]. Lesnoy vestnik, 2000, no. 2, pp. 39–47. (In Russ.)

  5. Plas J. Vander. Python dlya slozhnykh zadach [Python for complex tasks: Data Science and Machine Learning]. Saint Petersburg, 2020, 576 p. (In Russ.)

  6. Egorov A.I. Teplovoe proektirovanie letatel’nykh apparatov. Opredelenie temperaturnykh polei LA na etape proektirovaniya [Thermal design of aircraft. Determination of the temperature fields of the aircraft at the design stage]. Moscow: Izdatel’stvo MAI, 2019, 52 p. (In Russ.)

  7. Myakochin A.S., Nikitin P.V. Metodicheskie ukazaniya k raschetno-graficheskim rabotam “Teploobmen na poverkhnosti letatel’nykh apparatov” [Lecture notes (theoretical mate rial) on the discipline of “Thermogas dynamics and heat transfer in the structural elements of spacecraft”]. Moscow, 2015, 556 p. (In Russ.)

  8. Solncev V.P., Galiceyskiy B.M., Glebov G.A., Kalmikov B.M., Shkarban I.I., Pirogov A.E. Metodicheskie ukazaniya k raschetno-graficheskim rabotam “Teploobmen na poverkhnosti letatel’nykh apparatov” [Methodological guidelines for computational and graphic works “heat exchange on the surface of aircraft”]. Ed. V.P. Solncev. Мoscow, 1987, 47 p. (In Russ.)

  9. Poleznye funktsii Python [Useful Python Functions]. URL: https://python.ivan-shamaev.ru/5-usful-functions-of-pandas-python-for-data-science/(date of application: 02.02.2022).

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI