Modification of the generalized Tikhonov - Samarsky heat potentials in the analytical theory of nonstationary heat transfer for non-cylindrical regions


Аuthors

Kartashov E. M.1, 2*, Krylov S. S.3**

1. MIREA — Russian Technological University (Lomonosov Institute of Fine Chemical Technologies), 78, Vernadsky prospect, Moscow, 119454, Russia
2. Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia
3. ,

*e-mail: professor.kartashov@qmail.com
**e-mail: krylov@mai.ru

Abstract

A modification of the method of generalized thermal potentials is developed as applied to the boundary value problems solution of nonstationary heat conduction in a domain with a boundary uniformly moving in time. The classical approach to finding the unknown potential density from the boundary condition of the problem involves solving the corresponding Volterra integral equation of the second kind for partially bounded domains or a system of equations for finite domains. The modified approach consists in preliminary finding the operational form of the potential and identifying the operational density of the potential to be found. Due to this approach, analytical solutions to the heat conduction problems are of the simplest functional form, convenient for numerical experiments. The authors considered a series of specific illustrative problems of non-stationary heat conduction of a practical nature, and described a new effect of the thermally insulated moving boundary impact on the thermal response of a non-cylindrical region. An assumption is made on the transition of the kinetic energy of a moving thermally insulated boundary into the thermal energy of the region.

Keywords:

generalized thermal potentials, noncylindrical regions, analytical solutions

References

  1. Tikhonov A.N., Samarskii A.A. Equations of mathematical physics [Uravneniya matematicheskoi fiziki]. Moscow, Nauka, 1966, 724 p. (In Russ.).

  2. Kartashov E.M. Metod funktsii Grina pri reshenii kraevykh zadach dlya uravnenii parabolicheskogo tipa v netsilindricheskikh oblastyakh [Green's function method for solving boundary value problems for equations of parabolic type in noncylindrical domains]. Doklady RAN. 1996. Т. 351. № 1. С. 32-36.

  3. Formalev V.F. Equations of mathematical physics [Uravneniya matematicheskoi fiziki]. Moscow, URSS, 2020, 646 p. (In Russ.).

  4. Lykov A.V. Theory of thermal conductivity [Teoriya teploprovodnosti]. Moscow, Higher school, 1967, 600 p. (In Russ.).

  5. Zarubin V.S. Engineering methods for solving problems of heat conductivity [Inzhenernye metody resheniya zadach teploprovodnosti]. Moscow, Energoatomizdat, 1983, 328 p. (In Russ.).

  6. Kartashov E.M. Analytical methods in the theory of thermal conductivity of solids [Analiticheskie metody v teorii teploprovodnosti tverdykh tel]. Moscow, Vysshaya shkola, 2001, 540 p. (In Russ.).

  7. Kvalvasser V.I., Rutner J.F. A method for finding the Green's function of boundary value problems of the heat equation for a segment of a straight line with uniformly moving boundaries [Metod nakhozhdeniya funktsii Grina kraevykh zadach uravneniya teploprovodnosti dlya otrezka pryamoi s ravnomerno dvizhushchimisya granitsami]. Doklady AN SSSR, 1964, vol. 156, no. 6, pp. 1273–1276. (In Russ.).

  8. Krylov S.S., Perepelkin V.V., Chung V.V. Dynamic analysis of the motion of the Earth's pole in a short time interval [Dinamicheskii analiz dvizheniya zemnogo polyusa v korotkom intervale vremeni]. Kosmonavtika i raketostroenie, 2012, no. 4 (69), pp. 114–120. (In Russ.).

  9. Kotelnikov M.V., Krylov S.S., Filippov G.S. Mathematical Molecular Modeling of an Edge Plasma. Journal of Machinery Manufacture and Reliability, vol. 51, no. 5, pp. 457–462.

  10. Zhdanov S.K., Chikhachev A.S., Yavlinsky Yu.N. Kraevaya zadacha diffuzii dlya oblastei s podvizhnymi granitsami pri sokhranenii chisla chastits [The diffusion boundary value problem for regions with movable boundaries while maintaining the number of particles]. Izvestiya vuzov. Fizikа, 1975, vol. 1, no. 6, pp. 1545–1547.

  11. Kartashov E.M., Soloviev I.A. Stochastic analysis of the effect of the appearance of a temperature gradient at a thermally insulated moving boundary. Izvestiya RAN. Energetika, 2017, no. 1, pp. 119–128.

  12. Kartashov E.M. Analiticheskie resheniya giperbolicheskikh modelei nestatsionarnoi teploprovodnosti [Analytical solutions of hyperbolic models of unsteady heat conduction]. Fine chemical technologies, 2018, vol. 13, no. 2, pp. 81–90.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI