On the feedback inertia effects impact on the temperature field of a system with active thermal protection


Аuthors

Attetkov A. V.*, Volkov I. K., Kotovich A. V.

Bauman Moscow State Technical University, MSTU, 5, bldg. 1, 2-nd Baumanskaya str., Moscow, 105005, Russia

*e-mail: fn2@bmstu.ru

Abstract

The problem of the temperature field determining of the system, imitated by the splitter isotropic wall of the two different media, was stated and solved. One of the wall surfaces has an orthotropic thermally active layer that functions according to the retarded feedback principle with an anisotropic coating subjected to local heating while undergoing heat exchange with the environment. The article demonstrates that the sought-for temperature field represents composition of the two independent additive components, the first of which is being associated by the difference of the temperatures of the media being separated from the initial temperature of the separating system. The second one depends only on the power density of the heat flow affecting the separating system under conditions of cooling by the separated media with the temperatures coinciding with the initial temperature of the system. Solutions to the respective problems of the non-stationary heat conductivity were found with the methods of integral transforms in the analytically closed form application. The obtained results were employed for analyzing the effects of feedback inertia of thermally active layer on the formed temperature field of the system under study.


Keywords:

isotropic wall separating two different media, thermally active gasket with retarded feedback, anisotropic coating, local heat impact, temperature field, integral transforms

References

  1. Karslou G., Eger D. Teploprovodnost’ tvyordyh tel [Thermal conductivity of solids]. Moscow, Nauka, 1964, 488 p. (In Russ.)

  2. Lykov A.V. Teoriya teploprovodnosti [Theory of heat conductivity]. Moscow, Vysshaya shkola, 1967, 600 p. (In Russ.)

  3. Kartashov E.M. Analiticheskie metody v teorii teploprovodnosti tvyordyh tel [Analytical methods in the theory of the thermal conductivity of solids]. Moscow, Vysshaya shkola, 2001, 552 p. (In Russ.)

  4. Pudovkin M.А., Volkov I.K. Kraevye zadachi matematicheskoj teorii teploprovodnosti v prilozhenii k raschetam temperaturnykh polej v neftyanykh plastakh pri zavodnenii [Boundary-value problems of the mathematical theory of heat conduction in application to calculations of temperature fields in oil reservoirs in water flooding]. Kazan, 1978, 188 p. (In Russ.)

  5. Kartashov E.M., Kudinov V.A. Аnaliticheskaya teoriya teploprovodnosti i prikladnoj termouprugosti [Analytical theory of thermal conductivity and applied thermoelasticity]. Moscow, URSS, 2012, 653 p. (In Russ.)

  6. Formalev V.F. Teploprovodnost' anizotropnyh tel. Analiticheskie metody resheniya zadach [Thermal conductivity of anisotropic bodies. Analytical methods for solving problems]. Moscow, Fizmatlit, 2014, 312 p. (In Russ.)

  7. Attetkov A.V., Volkov I.K., Tverskaya E.S. Thermoactive gasket as a means of controlled influence on the temperature field of the structure. Izvestiya RAN. Energetika, 2002, no. 4, pp. 131–141.

  8. Attetkov A.V., Volkov I.K., Tverskaya E.S. Mathematical modeling of the process of heat transfer process in a shielded half-space with a thermoactive spacer under external thermal action. Journal of Engineering Physics and Thermophysics, 2008, vol. 81, no. 3, pp. 588–597.

  9. Attetkov A.V., Volkov I.K., Tverskaya E.S. Basic model of the heat transfer process in a shielded half-space with a thermoactive gasket. Izvestiya RAN. Energetika, 2009, no. 2, pp. 147–155.

  10. Attetkov A.V., Volkov I.K., Tverskaya E.S. Temperature field of a multilayer half-space with non-ideal thermal contact between layers. Izvestiya RAN. Energetika, 2010, no. 3. pp. 83–91.

  11. Attetkov A.V., Volkov I.K. Temperature field of a structure with an active protection system containing an anisotropic coating. Izvestiya RAN. Energetika, 2013, no. 6, pp. 125–136.

  12. Attetkov A.V., Volkov I.K. Peculiarities of the process of temperature field formation in a system with active thermal protection. Izvestiya RAN. Energetika, 2014, no. 3, pp. 69–81.

  13. Attetkov A.V., Volkov I.K. Heat transfer processes in a system with active thermal protection with feedback and anisotropic coating. Izvestiya RAN. Energetika, 2019, no. 5, pp. 148–158. (In Russ.)

  14. Attetkov A.V., Volkov I.K. Heat transfer in a separation system of two different media with active thermal protection under conditions of local thermal exposure. Thermal processes in engineering, 2019, vol. 11, no. 3. pp. 124–138. (In Russ.)

  15. Negoytse K. Primenenie teorii sistem k problemam upravleniya [Application of systems theory to control problems]. Moscow, Mir, 1981, 184 p. (In Russ.)

  16. Dezoer C. Sistemy s obratnoi svyaz'yu: vkhod-vykhodnye sootnosheniya [Feedback systems: Input-output relations]. Moscow, Nauka, 1983, 278 p. (In Russ.)

  17. Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnykh proizvodnykh matematicheskoj fiziki [Partial differential equations of mathematical physics]. Moscow, Vysshaya shkola, 1970, 712 p. (In Russ).

  18. Attetkov A.V., Vlasova L.N., Volkov I.K. Features of the formation of the temperature field in the system under the influence of an oscillating heat flow. Thermal processes in engineering, 2012, vol. 4, no. 12, pp. 553–558. (In Russ).

  19. Attetkov A.V., Volkov I.K. Oscillating component of the quasi-stationary temperature field of a system under the influence of a pulse-periodic heat flow. Izvestiya RAN. Energetika, 2015, no. 5, pp. 124–134. (In Russ.)

  20. Attetkov A.V., Volkov I.K. Oscillating component of the temperature field of an anisotropic half-space, the isotropic coating of the moving boundary of which is affected by a pulse-periodic heat flow. Thermal processes in engineering, 2017, vol. 9, no. 1, pp. 19–26. (In Russ.)

  21. El'sgol'c L.E. Differencial'nye uravneniya i variacionnoe ischislenie [Differential equations and calculus of variations]. Moscow, Nauka, 1969, 424 p. (In Russ.)

  22. Ditkin V.A., Prudnikov A.P. Operatsionnoe ischislenie [Operational calculus]. Moscow, Vysshaya shkola, 1966, 408 p. (In Russ.)

  23. Bateman G., Erdeyi A. Tablitsy integral'nykh preobrazovanii. Preobrazovaniya Fur'e, Laplasa, Mellina [Tables of integral transformations. Fourier, Laplace, Mellin transformations]. Moscow, Vysshaya shkola, 1969, 344 p. (In Russ.)

  24. Ditkin V.A., Prudnikov A.P. Spravochnik po operatsionnomu ischisleniyu [Handbook of operational calculus]. Moscow, Vysshaya shkola, 1965, 466 p. (In Russ.)

  25. Sneddon I. Preobrazovaniya Fur'e [Fourier transforms]. Moscow, Izdatel'stvo inostrannoi literatury, 1955, 668 p. (In Russ.)

  26. Bellman R. Vvedenie v teoriyu matrits [Introduction to Matrix Analysis]. Moscow, Nauka, 1969, 368 p. (In Russ.)

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI