Modeling the structure of composite materials with preset thermal properties and measurement methods


Аuthors

Khodunkov V. P.1*, Юрий Y. P.2**

1. D.I. Mendeleyev Institute for Metrology, Saint Petersburg, Russia
2. ITMO University, 49, Kronverkskiy av , St. Petersburg, 197101, Russia

*e-mail: walkerearth@mail.ru
**e-mail: zarich4@gmail.com

Abstract

The article presents an overview of the most applied methods for modeling composite materials with predetermined thermal properties, and provides the results of their effectiveness analysis. New applied methods for modeling and measuring thermal properties of composites (thermal conductivity) are considered, among which, what is important, absolute methods of measurement present. Both thermal models and measuring methods equations are submitted. An estimate of the expected accuracy of predicting given thermal conductivity values and measurement results is given.

Keywords:

composite material, modeling, structure, thermal properties, thermal conductivity, measurement, electrothermal analogy, absolute method

References

  1. Maxwell J.C. A treatise on electricity and magnetism. Vol. 1. Oxford University Press, 1873, 500 p.
  2. Wiener O. Die Theorie des Mischkörpers für das Feld der stationären Strömung. Abhandlung: Die Mittelwertsätze für Kraft, Polarization und Energie. Proceedings of the Mathematical and Physical Class of the Royal Saxon Society of Sciences, band 32, no. 6, Leipzig, 1912, 509 р.

  3. Odelevsky V.I. Raschet obobshchennoi provodimosti geterogennykh sistem [Calculation of the generalized conductivity of heterogeneous systems]. Technical Physics, 1951, vol. 21, iss. 6, pp. 667–685. (In Russ.)

  4. Meredith R.E., Tobias C.W. Conductivities in emulsions. Journal Electrochem society, 1961, vol. 108, pp. 286–290. DOI: 10.1149/1.2428064

  5. Misnar A. Teploprovodnost tverdyx tel, jidkostey, gazov I ih compozitzii [Thermal conductivity of solids, liquids, gases and their compositions]. Moscow, 1968, 464 p.

  6. Dulnev G.N., Zarichnyak Yu.P. Teploprovodnost smesei I kompozitzionnyh materialov [Thermal conductivity of mixtures and composite materials]. Leningrad, 1974, 264 p. (In Russ.)

  7. Edvabnik V.G. K teorii obobschennoi provodimosti smesei [On the theory of generalized conductivity of mixtures]. Modern problems of science and education, 2015, no. 1, part. 2, pp. 28–35. (In Russ.)

  8. Anisimova M.A. Mikromehanika formirovania uprugikh i teplovykh kharakteristik metallomatrichnykh kompozitov s mnogophaznoi perekhodnoi zonoi mejdu vklucheniami i matritzei [Micromechanics of the formation of elastic and thermal characteristics of metal–matrix composites with a multiphase transition zone between inclusions and matrix: Ph. D. thesis]. Tomsk, 2021, 117 p. (In Russ.)

  9. Sulaberidze V.Sh., Skornyakova E.A. Ocenka parametrov rastcetnykh modelei teploprovodnosti kompozitsionnykh materialov s polimernym svyazuychim po experimentalnym dannym [Estimation of the parameters of calculation models of thermal conductivity of composite materials with a polymeric binder according to experimental data]. Bulletin of the Nosov Magnitogorsk State Technical University, 2020, vol. 18, no. 4, pp. 57–64. DOI: 10.18503/1995-2732-2020-18-4-57-64. (In Russ.)

  10. Chernykh A.A., Shmyrin A.M. Investigation of thermal conductivity of composite materials with spherical filler. Computational mechanics of continuous media, 2020, vol. 13, no. 1, pp. 34–43. DOI: 10.7242/1999-6691/2020.13.1.3. (In Russ.)

  11. Sharapov A.I., Korshikov V.D., Chernykh A.A., Peshkova A.V. A method of researching the thermal conductivity coefficient of dispersion composite materials. Journal of Chemical Technology and Metallurgy, 2020, vol. 55, iss. 1, pp. 148–155. URL: https://dl.uctm.edu/journal/web/j2020-1. (In Russ.)

  12. Zarubin V.S., Kuvyrkin G.N., Savel’yeva I.Yu. The effective thermal conductivity of the composite in the case of deviations of the shape of the inclusions from the ball. Mathematical Modeling and Computational Methods, 2014, no. 4, pp. 3–17. (In Russ.)

  13. Ngo I.L., Jeon S., Byon C. Thermal conductivity of transparent and flexible polymers containing fillers: A literature review. International Journal of Heat Mass Transfer, 2016, vol. 98, pp. 219–226. URL: https://doi.org/10.1016/j.ijheat- masstransfer.2016.02.082

  14. Gavrilin I.V. Composite materials in mechanical engineering: Review information. Moscow, 1989, 40 p. (In Russ.)

  15. Sevostianov I., Kachanov M. On some controversial issues in effective field approaches to the problem of the overall elastic properties. Mechanics of Materials, 2014, vol. 69, pp. 93–105. (In Russ.)

  16. Khodunkov V.P., Zarichnyak Yu.P. Sposob sozdania dvyhkomponentnogo kompozita s zadannoi teploprovodnosty [The method of creating a two-component composite with a given thermal conductivity]. Patent Rossiiskaia Federatsiia no. 2020123354 (2021).

  17. Khodunkov V.P., Zarichnyak Yu.P. Sposob sozdania metallokompozita s predskazyemoi teploprovodnosty [A method for creating a metal composite with predictable thermal conductivity]. Patent Rossiiskaia Federatsiia no. 2020123353 (2020).

  18. Platunov E.S., Baranov I.V., Buravoy S.E., Kurepin V.V. Thermophysical measurements: textbook. Allowance. Saint Petersburg, 2010, 738 p. (In Russ.)

  19. Ponomarev S.V., Mishchenko S.V. A device for measuring the thermophysical properties of substances by methods of regular regimes. Transactions of Tambov State Technical University, 2021, vol. 27, no. 1, pp. 6–13. DOI: 10.17277/ vestnik.2021.01.pp.006-013. (In Russ.)

  20. Balabanov, P.V., Savenkov A.P. Teoreticheskie I prakticheskie aspekty izmerenia teplofizicheskih svoistv geterogennyh materialov [Theoretical and practical aspects of measuring the thermophysical properties of heterogeneous materials: monograph]. Tambov, 2016, 188 p. (In Russ.)

  21. Ponomarev S.V., Mishchenko S.V., Divin A.G. Teoreticheskie i prakticheskie aspekty teplofizicheskih izmerenii [Theoretical and practical aspects of thermophysical measurements: monograph in 2 books]. Tambov, 2006. Prince. 1, 204 p. (In Russ.)

  22. Teoreticheskie i prakticheskie aspekty teplofizicheskih izmerenii [Theoretical and practical foundations of thermophysical measurements]. Ed. S.V. Ponomarev. Moscow, 2008, 408 p. (In Russ.)

  23. Ponomarev S.V., Bulanova O.V., Divin A.G. et al. Sposob izmerenia teplofiziheskih svoistv anizotropnyh materialov metodom lineinogo impulsnogo istochnika [A method for measuring the thermophysical properties of anisotropic materials by the method of a linear pulsed heat source]. Patent Rossiiskaia Federatsiia no. 2015147065 (2017).

  24. Sokolov N.A. Sposob izmerenia teploprovodnosti materialov [A method for determining the thermal conductivity of materials]. Patent Rossiiskaia Federatsiia no. 2004133748 (2006).

  25. Khodunkov V.P., Zarichnyak Yu.P. Absolutny sposob differenzialno-skaniruyschei konductometrii raznorodnyh tverdyh materialov [Absolute method of differential-scanning conductometry of dissimilar solid materials]. Patent Rossiiskaia Federatsiia no. 2020138458 (2001).
  26. Khodunkov V.P., Zarichnyak Yu.P. Absolutnyi sposob differenzialno-skaniruyschei konductometrii [Absolute method of differential-scanning thermal conductometry]. Patent Rossiiskaia Federatsiia no. 2020138452 (2021).

  27. Fokin V.M., Boikov G.P., Vidin Yu.V. Fundamentals of technical thermophysics [Osnovy tehnicheskoi fiziki Fundamentals of technical thermophysics]. Moscow, 2004, 172 p. (In Russ.)


mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI