Local and average heat transfer in a diffyser-type dimple at different angles of its installation


Аuthors

Il'inkov A. V.1*, Morenko I. V.2**, Takmovtsev V. V.1***, Zaripov I. S.1****, Popov I. A.1*****, Shchukin A. V.1******

1. Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia
2. Institute of Mechanics and Engineering - Subdivision of the Federal State Budgetary Institution of Science “Kazan Scientific Center of the Russian Academy of Sciences” , Kazan, Republic of Tatarstan, Russia

*e-mail: ailinkov@mail.ru
**e-mail: morenko@imm.knc.ru
***e-mail: vvt379@rambler.ru
****e-mail: ilnar_z@bk.ru
*****e-mail: popov-igor-alex@yandex.ru
******e-mail: a.v.shchukin@rambler.ru

Abstract

Experimental and numerical studies yielded the data on local and average heat transfer in a single diffuser-type dimple in turbulent air flows. The dimple was located on a plane surface and could be installed at different angles to the main flow β = 0 – 60°. The Reynolds number ReD was 4.62·104. Based on comparative studies, optimal angles were chosen (β = 45 – 60°), which provided the best enhancement of convective heat transfer with implementation of a single epicenter mechanism of self-organizing large-scale vortex generation. Satisfactory coincidence of numerical simulation and experiments was obtained in the range of recommended installation angles of diffuser-type dimple.

Keywords:

diffuser-type dimple, experimental and numerical studies, heat transfer enhancement, dimple inclination angle

References

  1. Leontyev A.I., Alekseenko S.V., Volchkov E.P. etc. Vikhre vye tekhnologii dlya energetiki [Vortex technologies for power engineering]. Ed. by A.I. Leontyev. Мoscow, Izdatel’stvo Moskovskogo energeticheskogo instituta, 2017, 350 p.

  2. Gortyshov Yu.F., Popov I.А., Olimpiev V.V., Shchelchkov А.V., Kas’kov S.I. Teplogidravlicheskaya effectivnost perspectivnykh sposobov intensifikatsii teplootdachi v kanalakh teploobmennogo oborudovaniya. Intensifikatsiya teploobmena: monografiya [Thermal-hydraulic performance of promising methods of heat transfer enhancement in the channels of heat exchangers. Heat transfer enhancement: monograph]. Kazan, Centr Innovatsionnykh Tekhnologiy, 2009, 531 p.

  3. Kesarev V.S., Kozlov А.P. Structura techeniya i teploobmen pri obtekanii polusfericheskogo uglubleniya turbulizirovannym potokom vozdukha [Flow structure and heat transfer from a spherical cavern in a turbulized air flow]. Vestnik MGTU. Mashinostroenie, 1993, iss. 1, pp. 106–115.

  4. Shchukin A.V., Kozlov A.P., Chudnovskiy Ya.P., Agachev R.S. Intensifikatsiya teploobmena sfericheskimi vyemkami. Obzor [Heat transfer enhancement by spherical dimples. Review]. Izvestiya RAN. Energetika, 1998, iss. 3, pp. 47–64.

  5. Isaev S.А., Leontyev А.I., Shchelchkov А.V. Intensifikatsiya teploobmena ovalnymi lunkami [Heat transfer enhancement by oval dimples]. Tezisy dokladov i soobshcheniy XV Minskogo mezhdunarodnogo foruma po teplo-i massoobmenu. Minsk, Belarus, 23–26 May 2016. Minsk, Institut teplo-i massoobmena imeni A.V. Lykova NAN Belarusi, 2016, vol. 1, pp. 102–105.

  6. Gachicheladze I.А., Kiknadze G.I., Krasnov Yu.K., etc. Teploobmen pri samoorganizatsii smercheobraznykh structur [Heat transfer during self-organization of tornado- like structures]. Teplomassoobmen – MMF. Materialy Minskogo mezhdunarodnogo foruma po teplomassoobmenu Problemnye doklady. Sektsiya 1–2. Minsk, AN BSSR, 1988, p. 83.

  7. Shchukin A.V., Ilyinkov А.V., Takmovtsev V.V., Ilyinkova Т.А., Khabibullin I.I. Teplofizika rabochikh processov v okhlazhdaemykh lopatkakh gazovykh turbin [Thermophysics of work processes occurring in cooled gas turbine blades]. Ed. by А.V. Shchukin. Kazan, Izdatel’stvo KNITU-KAI, 2020, 392 p.

  8. Shchukin А.V., Ilyinkov А.V., Takmovtsev V.V., Khabibullin I.I., Zaripov I.Sh. Teploobmennaya poverkhnost [Heat exchanging surface]. Patent Rossiiskaya Federatsiya no. 2675733 (2018).

  9. Kiknadze G.I., Gachicheladze I.А., Alekseev V.V. Samoorganizatsiya smercheobraznykh struy v potokakh vyazkikh sploshnykh sred i intensifikatsiya teplomassoobmena, soprovozhdayushchaya eto yavlenie [Self-organization of tornadolike jets in viscous flows of continuous media and enhancement of accompanying heat and mass transfer]. Мoscow, Izdatel’stvo Moskovskogo energeticheskogo instituta, 2005, 84 p.

  10. Marchukov Е.Yu., Starodumov А.V., Shchukin А.V., Il’inkov А.V., Takmovtsev V.V., Popov I.А., Ermakov А.М. Comparative analysis of thermal-screen efficiency behind ring belts of fan-shaped and cylindrical holes in a wide range of blowing angles and injection parameters. Thermophysics and Aeromechanics, 2021, vol. 28 (5), pp. 649–660. DOI: 10.1134/S086986432105005X

  11. Ilinkov A.V., Takmovtsev V.V., Shchukin A.V., Khabibullin I.I., Zaripov I.Sh. Vortex structure intensity in diffuser dimples. Journal Russian Aeronautics. 2018, vol. 61, no. 4, pp. 586–592. DOI: 10.3103/S1068799818 040128

  12. Ilinkov A.V., Shchukin A.V., Takmovtsev V.V., Khabibullin I.I., Zaripov I.Sh. Increasing the strength of large scale vertical structures in diffuser dimples. Journal Russian Aeronautics, 2020, vol. 63, no. 2, pp. 278–282. DOI: 10.3103/S1068799820020129

  13. Menter F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA Journal, vol. 32, no. 8, 1994, pp. 1598–1605. DOI: 10.2514/3.12149

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI