Functioning models and comparative analysis of airframe cooling systems of a high-speed unmanned aerial vehicle


Аuthors

Guseynov A. B.

Moscow Aviation Institute (National Research University), 4, Volokolamskoe shosse, Moscow, А-80, GSP-3, 125993, Russia

e-mail: a.b.guseynov@mail.ru

Abstract

In the paper, mathematical models of the functioning of cooling systems of structural elements (airframe) of a high-speed unmanned aerial vehicle (UAV). The basics of the methodology for the formation of the appearance, preliminary design, the results of determining the main characteristics and parameters of the aircraft with a given technical requirement are described. Estimates of the airframe thermal fields and heat transfer coefficients at separate points along the length of the hull are given. Possible options of cooling systems and the application areas in terms of thermal efficiency are considered. Mathematical models of the functioning of the cooling systems of an aircraft airframe convective with a liquid coolant and cooling are presented. The efficiency of cooling systems during the flight of a high-speed UAV in the final section was analyzed according to the criterion “the required mass of the cooling system to providing the required temperature”.

Keywords:

high-speed aircraft, unmanned aerial vehicle, designing, thermal field, airframe cooling, cooling systems

References

  1. Chernobrovkin L.S. Ajerodinamicheskaja komponovka LA. Ballisticheskoe proektirovanie [Aerodynamic layout of the aircraft. Ballistic design]. Moscow, 1988, 73 p.

  2. Chernobrovkin L.S. Raschet startovoj massy i razmerov LA [Calculation of the starting mass and dimensions of the aircraft]. Moscow, 1989, 76 p.

  3. Guseynov A.B., Trusov V.N. Modeli formirovanija oblika malozametnyh letatel’nyh apparatov [Models of the formation of the appearance of inconspicuous aircraft]. Moscow, 2017, 404 p.

  4. Afanas’ev P.P., Golubev I.S., Novikov V.N. et al. Bespilotnye letatel’nye apparaty. Osnovy ustrojstva i funkcionirovanija [Unmanned aerial vehicles. Fundamentals of device and functioning]. Moscow, 2008, 656 p.

  5. Aerodinamika raket [Tactical missile aerodynamics]. In 2 books. Book 1. Ed. by M. Hemsch, J. Nielsen. Moscow, 1989, 426 p.

  6. Lebedev A.A., Chernobrovkin L.S. Dinamika poleta [Flight dynamics]. Moscow, 1973, 616 p.

  7. GOST 4401-81. Atmosfera standartnaja. Parametry [The standard atmosphere. Parameters]. Moscow, 2004, 181 p.

  8. Kutateladze S.S. Osnovy teorii teploobmena. [Fundamentals of the theory of heat transfer]. Edition 5th, reprinted and supplemented. Moscow, 1979, 416 p.

  9. Osnovy teploperedachi v aviacionnoj i raketno-kosmicheskoj tehnike [Fundamentals of heat transfer in aviation and rocket and space technology]. Ed. by V.S. Avduevsky, V.K. Koshkin. Moscow, 1992, 528 p.

  10. Avkhimovich B.M. Konstrukcija i proektirovanie teplozashhity bespilotnyh letatel’nyh apparatov [Design and design of thermal protection of unmanned aerial vehicles]. Moscow, 1994. 161 p.

  11. Golubev I.S., Samarin A.V. Proektirovanie konstrukcij letatel’nyh apparatov [Design of aircraft structures]. Moscow, 1991, 512 p.

  12. Drakin I.I. Ajerodinamicheskij i luchistyj nagrev v polete [Aerodynamic and radiant heating in flight]. Moscow, 1961, 95 p.

  13. Siegel R., Howell J. Thermal radiation heat transfer. Moscow, 1975, 936 p.

  14. Lykov A.V. Teorija teploprovodnosti [Theory of thermal conductivity]. Moscow, 1967, 600 p.

  15. Pankratov B.M. Osnovy teplovogo proektirovanija transportnyh kosmicheskih system [Fundamentals of thermal design of transport space systems]. Moscow, 1988, 304 p.

  16. Nikitin P.V. Teplovaja zashhita. Uchebnik [Thermal protection: textbook]. Moscow, 2006, 512 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI