On zero-gravity approximation application for film condensation description under microgravity conditions


Аuthors

Cherkasov S. G.*, Kuroedov A. A.**, Laptev I. V.***, Moiseeva L. A.****

Keldysh Research Centre, 8, Onezhskaya str., Moscow, 125438, Russia

*e-mail: sgcherkasov@yandex.ru
**e-mail: kuroedov@kerc.msk.ru
***e-mail: laptev@kerc.msk.ru
****e-mail: lida.moiseeva@mail.ru

Abstract

The article studies the applicability boundaries ideal approximation of zero gravity under conditions of small overloading on the example of film condensation. The problem is being solved in one-dimension non-stationary setting in dimensionless form. The film growth velocity and a value of the integral thermal flow on the vertical plate of finite length are under study. Spatial boundaries of zones of various condensation modes along the plate as well as their displacement rate were determined. Characteristic time of transition to the normal mode of film condensation dependence on the task parameters was determined.

Keywords:

film condensation, microgravity, ideal zero-gravity

References

  1. Miller C.A., Neogi P. Interfacial phenomena: equilibrium and dynamic effects. CRC Press, 2007, 550 p.

  2. Teoria teplomassoobmemna: uchebnik dlya vuzov. Pod red. A.I. Leont’eva. 3-e izd., ispr. i dop. [Theory of heat and mass transfer: textbook for universities]. Moscow, 2018, 462 p. (In Russ.)

  3. Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperadacha: uchebnik dlya vuzov. 3-e izd [Heat transfer. textbook for universities]. Moscow, 1975, 488 p. (In Russ.)

  4. Arnass A.O. et al. On the teaching of the condensation heat transfer. ASME Ineternational Mechanical Engineering Congress and Explosion, 2004. vol. 47233. pp. 3–9. URL: https://doi.org/10.1115/IMECE2004-59277

  5. Chung P.M. Unsteady laminar film condensation on vertical plate. ASME-AIChe Heat Transfer Conference and Exhibit, Houston, 1963, pp. 1–8. URL: https://doi.org/10.1115/1.3686011

  6. Chen M.M. An analytical study of laminar film condensation: Part 1– flat plates. Journal Heat Transfer, 1961, vol. 83, no. l, pp. 48–54. URL: https://doi.org/10.1115/1.3680468

  7. Koh J.C.Y. Film condensation in a forced-convection boundary-layer flow. International Journal of Heat and Mass Transfer, 1962, vol. 5, no. 10, pp. 941–954. URL: https://doi.org/10.1016/0017-9310(62)90074-1

  8. Cess R.D. Laminar-film condensation on a flat plate in the absence of a body force. Journal of Applied Mathematics and Physics, 1960, vol. 11, no. 5, pp. 426–433. URL: https://doi.org/10.1007/BF01604500

  9. Huang О., Zhang J., Wang L. Review of vapor condensation heat and mass transfer in the presence of non-condensable gas. Applied Thermal Engineering, 2015, vol. 89, pp. 469–484. URL: https://doi.org/10.1016/j.appl-thermaleng.2015.06.040

  10. Martin-Valdepenas J.M., Jimenez M.A. Comparison of film condensation models in presence of non-condensable gases implemented in a CFD Code. Heat Mass Transfer, 2005, vol. 41, no. 11, pp. 961–976. URL: https://doi.org/10.1007/s00231-004-0606-5

  11. Zhang C., Cheng P., Minkowycz W.J. Lattice Boltzmann simulation of forced condensation flow on a horizontal cold surface in the presence of a non-condensable gas. International Journal of Heat and Mass Transfer, 2017, vol. 115, pp. 500–512. URL: https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.005

  12. Ajaev V.S., Cherkasov S.G. Razvitie gidrodinamicheskoj neustojchivosti pri plenochnoj kondensacii na cilindricheskoj trubke v nevesomosti [Development of hydrodynamic instability during film condensation on a cylindrical tube in zero-gravity]. Proceedings of the Russian Academy of Sciences. Fluid Dynamics, 1995, no. 6. pp. 106–110. (In Russ.)

  13. Ajaev V.S., Cherkasov S.G. Stacionarnyj rezhim kondensacii nasyshchennogo para na konicheskoj poverhnosti v usloviyah nevesomosti [Steady condensation of the saturated vapor on a conical surface in zero-gravity]. High Temperature. 1996, vol. 34. no. 5. pp. 816–819. (In Russ.)

  14. Kuroedov A.A., Cherkasov S.G. Laptev I.V. Moiseeva L.A. Kondensaciya gaza nadduva v toplivnom bake s razdelitel’noj diafragmoj v usloviyah nevesomosti [Pressurizing gas condensation in propellant tank with diaphragm in zero-gravity]. Thermal Processes in Engineering, 2021, vol. 13, no. 4. pp. 155–163. (In Russ.). DOI: 10.34759/tpt-2021-13-4- 155-163

  15. Azzolin M. et al. Experimental investigation of in-tube condensation in microgravity. International Communications in Heat and Mass Transfer, 2018, vol. 96, pp. 69–79. URL: https://doi.org/10.1016/j.icheatmasstransfer.2018. 05.013

  16. Balasubramaniam R., Mohammad M.H. Transient condensation of flowing vapor on a flat-plate: A scaling analysis. International Journal of Heat and Mass Transfer, 2015, no. 91, pp. 793–799. URL: https://doi.org/10.1016/j.ijheatmasstrans-fer.2015.08.011

  17. Vargaftik N.B. Spravochnik po teplofizicheskim svojstvam gazov i zhidkostej [Handbook on thermophysical properties of gases and liquids]. Moscow, 1972, 720 p. (In Russ.)

  18. Leng D.E., Comings E.W. Thermal conductivity of propane. Industrial & Engineering Chemistry, 1957, vol. 49, no. 12, pp. 2042–2045. URL: https://doi.org/10.1021/ie50576a045

  19. Diller D.E. Measurements of the viscosity of saturated and compressed liquid propane. The Journal of Chemical Physics, 1965, vol. 42, no. 6, pp. 2089–2100. URL: https://doi.org/10.1021/je00029a003

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI