Аuthors
Kuzma-Kichta Y. A.*,
Ivanov N. S.**,
Chugunkov D. V.
National Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya str., Moscow, 111250 Russia
*e-mail: kuzma@itf.mpei.ac.ru
**e-mail: ivanovniks@mpei.ru
Abstract
Increased safety requirements are being placed to the designed High-Temperature Gas-cooled Reactors while WWER class reactor facilities (RF) operation. In case of light-water RF accidents caused by the reactivity surge or coolant loss, the heat-producing elements are being heated up to 850–950 °C. The increased helium pressure with gas fission products (133Xe, 89Kr, 135I) under the cladding determines the fuel element tightness. On the accident progression and temperature rise up to 1500—2000°C the overheated steam in conjunction with hydrogen will significantly affect the active zone degradation. The multi-component mixtures properties clarification is up-to-date for these conditions. The GasProp software presented in the article allows predicting thermodynamic and kinetic properties of both individual gases and mixtures based on virial expansion of the real gas state equation and inferences of molecular-kinetic theory.
Keywords:
wetting, contact angle, nanoparticles, hydrophobicity, hydrophilicity
References
- Dzyubenko B.V., Kuzma-Kichta Ya.A., Leontiev A.I., Fedik I.I., Kholpanov L.P. Intensification of Heat and Mass Transfer on Macro-, Micro-, and Nanoscale, New York, 2016, 564 p.
- Kuzma-Kichta Yu.A., Ivanov N.S., Lavrikov A.V. et al. Snizhenie termicheskogo soprotivleniya termostabilizatora s pomoshch’yu naneseniya v isparitele pokrytiya iz mikro- i nanochastits [Decreasing the thermal resistance of a thermal stabilizer by applying a coating of micro- and nanoparticles in an evaporator]. Thermal processes in engineering, 2022, vol. 14, no. 2, pp. 50–55. (In Russ.). DOI 10.34759/tpt-2022-14-2-50-55.
- Kuznetsov G.V., Feoktistov D.V., Orlova E.G. et al. The influence of the drop formation rate at spreading over a microstructured surface on the contact angle. Thermophysics and Aeromechanic, 2018, vol. 25, pp. 237–244.
- Kandlikar S.G. A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation. Journal Heat Transfer, 2001, vol. 123 (6), pp. 1071–1079.
- Kuzma-Kichta Yu.A., Ivanov N.S., Lavrikov A.V., Shtefanov Yu.P., Prokopenko I.F. Investigation of methods for reducing the thermal resistance of a composite thermal stabilizer. Thermal processes in engineering, 2019, vol. 11, no. 10, pp. 447–452. (In Russ.). DOI: 10.34759/tpt-2019-11-10-447-452
- Young T. Philosophy Transaction Royal. Society, 1805, 95, 65 p.
- Kim D., Kim J., Hwang W. Prediction of contact angle on a microline patterned surface. Surface Science Letters, 2006, vol. 600, no. 22, pp. 301–304.
- Deng X., Mammen L., Butt H.J., Vollmer D. Candle soot as a template for a transparent robust superamphiphobic coating. Science, 2011, vol. 335 (6064), pp. 67–70. DOI: 10.1126/ science.1207115
- Daniel J., Daniela L., Nenad M, Jing K., Evelyn N. Scalable Graphene Coatings for Enhanced Condensation Heat Transfer. Nano Letters, 2015, vol. 15 (5), pp. 2902–2909.
- Kuzma-Kichta Y.A., Ivanov N.S., Lavrikov A.V. Transport Properties of Coatings Consisting of Al2O3 Nanoparticles. Journal of Engineering Physics and Thermophysics. 2021, vol. 94, pp. 30–35 URL: https://doi.org/10.1007/s10891-021-02270-4
- Kuzma-Kichta Y.A., Ivanov N.S., Chugunkov D.V. et al. Wetting of Hydrophobic and Hydrophilic Coatings. Journal of Engineering Physics and Thermophysics, 2021, vol. 94, pp. 1549–1556.
- Kuzma-Kichta Yu.A., Ivanov N.S., Chugunkov D.V., Lavrikov A.V. Issledovanie smachivaniya poverkhnosti s kombinirovannoi strukturoi [Investigation of the wetting of a surface with a combined structure]. Thermophysics and Aeromechanics, 2021, vol. 28, no. 6, pp. 893–900. (In Russ.)
- Kuzma-Kichta Yu.A., Chugunkov D.V., Lavrikov A.V., Ivanov N.S. Sposob formirovaniya kombinirovannoi supergidrofobnoi struktury poverkhnosti [Method of forming a combined superhydrophobic surface structure]. Patent Rossiiskaya Federatsiya no. 2769107 (2022).
- Kuzma-Kichta Yu.A., Ivanov N.S., Chugunkov D.V., Kiselev A.S. Sposob formirovaniya gidrofobnoi tekstury na poverkhnosti metalla [Method of forming a hydrophobic texture on a metal surface]. Patent Rossiiskaya Federatsiya no. 2750831 (2021).
- Kuzma-Kichta Yu.A., Komendantov A.S., Lavrikov A.V., Ivanov N.S., Chugunkov D.V. Intensifikatsiya teploobmena pri kondensatsii na trube s nanogidrofobnym pokrytiem pri vysokom gazosoderzhanii [Intensification of heat transfer during condensation on a pipe with a nanohydrophobic coating at high gas content]. Materialy Vos’moi Rossiiskoi natsional’noi konferentsii po teploobmenu [Proceedings of the Eighth Russian National Conference on Heat Transfer (Moscow, October 17–22, 2022)]. 2 vols. Vol. 2. Moscow, 2022, pp. 144–145. (In Russ.)
- Henderson C.L., Marchello J.M. Film Condensation in the Presence of a Noncondensable Gas. Journal Heat Transfer, 1969, vol. 91(3), pp. 447–450.
- Sapozhnikov S.Z., Mityakov V.Y., Mityakov A. Heatmetry. The Science and Practice of Heat Flux Measurement. Springer, 2020, 232 p. URL: https://doi.org/10.1007/978-3-030-40854-1_1
- Isachenko V.P., Solodov A.P., Maltsev A.P., Yakusheva E.V. Asimptoticheskii analiz kapel’noi kondensatsii [Asymptotic Analysis of Drop Condensation]. High temperatures, 1984, vol. 22, iss. 5, pp. 924–932. (In Russ.)
- Berman L.D., Fuchs S.N. Vliyanie primesi vozdukha na teplootdachu pri kondensatsii dvizhushchegosya para [Influence of air admixture on heat transfer during condensation of moving steam]. Izvestiya VTI, 1952, no. 1. pp. 11–18. (In Russ.)
- Komendantov A.S., Kovalev S.A., Petukhov B.S. Eksperimental’noe issledovanie teplootdachi pri kondensatsii para chetyrekhokisi azota, chastichno proshedshego vtoruyu stadiyu dissotsiatsii [Experimental study of heat transfer during condensation of nitrogen tetroxide vapor that has partially passed through the second stage of dissociation]. High Temperature. 1971, vol. 9 (1), pp. 207–209. (In Russ.)