Thermal insulation design forming for thermostatting of the unmanned aerial vehicles functioning under arctic temperature conditions


Аuthors

Maskaykin V. A.

GNPP "Region", 13a, Kashirskoe shosse, Moscow, 115230, Russia

e-mail: vladimir.maskaykin@mail.ru

Abstract

The article is devoted to the up-to-date task of increasing thermal insulation properties of the unmanned aerial vehicles being operated at the extreme temperatures. Theoretical studies on forming a low thickness heat-insulating structure, ensuring high heat-insulation indices, are being conducted by the design method. Optimal heat-insulation scheme and characteristics of materials including in it are being determined by conducting theoretical study on the heat transfer of various multi-layer heat-insulating structures with of various characteristics variation of its materials. Comparative analysis of analogues, employed as heat isolation materials of the aircraft with the heat-insulating structure considered in this work, is being performed. Theoretical study of the heat exchange of various heat-insulating structures is being conducted by numerical finite-difference method. Optimal heat-insulating structure ensuring high indicators of heat insulation at small thickness was developed by the results of theoretical study. The pros and contras of the heat-insulating structure being considered on this work compared to their counterparts employed in the aircraft were revealed.

Keywords:

thermostatting of unmanned aerial vehicles, Arctic temperature conditions, thermal insulation materials, multilayer thermal insulation structure, bidirectional rectangular reinforcement scheme, non-stationary thermal conductivity

References

  1. Kuznetsov I.E., Melnikov A.V., Rogozin E.A., Strashko O.V. Methodology for accounting the influence of meteorological factors on the efficiency of application of unmanned aerial vehicles on the basis of system analysis. Herald of Daghestan State Technical University. Technical Sciences, 2018, 45 (2), pp. 125–139. (In Russ.). DOI: 10.21822/ 2073-6185-2018-45-2-125-139
  2. Rogozin E.A., Bokova O.I., Melnikov A.V. Main aspects of improving the methodology for estimating the efficiency of functioning of unmanned aerial vehicles under conditions. The bulletin of Voronezh Institute of the Ministry of Internal Affairs of Russia, 2019, no. 3, pp. 21–33. (In Russ.)
  3. Klimenkov G.P., Prikhod’ko Yu.F., Puzyrev L.N., Kharitonov A.M. Modelling of icing of flying vehicles in climatic wind tunnels. Thermophysics and Aeromechanics. 2008, vol. 15, no. 4, pp. 563–572. (In Russ.)
  4. Gorbunov A.A., Galimov A.F. The influence of meteorological factors on the use and flight safety of unmanned aerial vehicle with side repeater radio. Saint-Petersburg university of State fire service of EMERCOM of Russia, 2016, no. 1, pp. 7–15. (In Russ.)
  5. Sytyy YU.V., Sagomonova V.A., Maksimov V.G., Babashov V.G. VTI-22 sound and thermal insulation material of gradient structure. Aviatsionnye materialy i tekhnologii, 2013, no. 2, pp. 47–49. (In Russ.)
  6. Aviacionnye materialy [Aircraft materials]. Spravochnik v 13 tomah. T. 9. Teplozashhitnye, teploizoljacionnye i kompozicionnye materialy, vysokotemperaturnye nemetallicheskie pokrytija [Heat protection, thermal insulation and composite materials, hightemperature non-metallic coatings]. Moscow, 2011, 31 p. (In Russ.)
  7. Tarasov V.A. Timofeyev M.P., Yermakova Yu.V., Boyarskaya R.V. Analysis of Properties and Peculiarities of Functioning of Highly Porous Insulating Materials Based on Basalt Fibe. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, 2013, no. 4 (93), pp. 120–129. (In Russ.)
  8. Grashchenkov D.V., Balinova Yu.A., Tinyakova E.V. Keramicheskiye volokna oksida alyuminiya i materialy na ikh osnove [Aluminum oxide ceramic fibers and materials based on them, Glass and Ceramics]. Glass and Ceramics, 2012, no. 4, pp. 32–36. (In Russ.)
  9. Kuznetsov S.P. Konkretnaya aviatekhnika. Samolet Yak-42 [Specific aviation technology. Aircraft Yak-42]. Saint-Petersburg, 2022, 345 p. (In Russ.)
  10. Voloshin F.A., Kuznetsov A.N. et al. Samolet Tu-154. Konstruktsiya i tekhnicheskoye obsluzhivaniye. Kniga 1 [Tu-154 aircraft. Construction and maintenance. Book 1]. Moscow, 1975, 291 p. (In Russ.)
  11. Zadorozhnyi YA.N., Mamoshin P.N. Konstruktsiya i letnaya ekspluatatsiya samoleta An-24 [Design and flight operation of the An-24 aircraft]. Moscow, 1980, 142 p. (In Russ.)
  12. Antonov O.K. Passazhirskiy samolet AN-14. Tekhnicheskoye opisaniye [Passenger aircraft AN-14. Technical description]. Moscow, 1964, 195 p. (In Russ.)
  13. Danilov V.A. Vertolet MI-8. Ustroystvo i tekhobsluzhivaniye [Helicopter MI-8. Device and maintenance]. Moscow, 1988, 278 p. (In Russ.)
  14. Monroe William Shumate, James W Stacy. Reinforced Insulation Product and System Suitable for Use in an Aircraft. Patent U.S. 7278608 B2, Int. Cl. B 64 C 1/00. No. 11/167’864 (2007).
  15. Kolakh Mikael, Venttsel Khans-Peter, Dol’tsinski Vol’f-Ditrikh, Kherman Ral’f. Konstruktivnyi komponent fyuzelyazha samoleta ili kosmicheskogo letatel’nogo apparata so sloem peny v kachestve teploizolyatsii [Aircraft or spaceship structural component with heat-insulating foam layer]. Patent Rossiiskaia Federatsiia no. 2009124191/11 (2012).
  16. Maskaykin V.A., Makhrov V.P. The study of convective heat transfer structured, inhomogeneous element serving as a heat-insulating layer for the skin of aircraft products. Thermal processes in engineering, 2021, vol. 13, no. 5, pp. 230–237. (In Russ.). DOI: 10.34759/tpt-2021-13-5-230-23
  17. Kuznecov G.V., Sheremet M.A. Raznostnye metody reshenija zadach teploprovodnosti [Difference methods for solving heat conduction problems]. Tomsk, 2007, 172 p. (In Russ.)
  18. Krainov A.Yu., Minkov L.L. Chislennyye metody resheniya zadach teplomassoobmena [Numerical methods for solving problems of heat and mass transfer]. Tomsk, 2016, 92 p. (In Russ.)
  19. Samarskij A.A., Vabishhevich P.N. Vychislitel’naja teploperedacha [Сomputational heat transfer]. Moscow, 2003, 785 p. (In Russ.)
  20. Samarsky A.A. Teoriya raznostnykh skhem [Theory of difference schemes]. Moscow, 1989, 616 p. (In Russ.)
  21. Dul’nev G.N., Zarichnyak YU.P. Teploprovodnost’ smesey i kompozitsionnykh materialov [Thermal conductivity of mixtures and composite materials]. Leningrad, 1974, 264 p. (In Russ.)

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI