An overview on thermal exchange and crisis of heat transfer release in the annular channels with flow swirl


Аuthors

Boltenko E. A.

Joint Stock Company «Electrogorsk Research and Engineering Center on NPP safety» (JSC «EREC»), Saint Constantine str., 6, Electrogorsk, Moscow region, 142530 Russia

Abstract

The article presents an overview on the works concerning heat transfer and crisis of heat release in the annular channels with the swirl, and with the swirl and a transit flow. The author shows that three regions are being distinguished on the concave surface. Significant critical heat flux (CHF) increase exists in the first region, compared to the smooth channel. Critical heat flux decreases in the third region with the steam content increase. The second region is transitional one. Two regions are being distinguished on a convex surface. In the first area, the CHFs are slightly lower or equal to the ones for the smooth channel. In the second region, drastic fall of the CHF exists at the insignificant steam content increase. In this area herewith the critical steam content is practically independent from the heat flux density. The CHF for the annular channels with the swirl and transit flux and on both concave and convex surfaces is much higher than the respective CHF values for both smooth annular channel and annular channel with swirl. The article presents the dependencies for the heat transfer coefficients and critical heat fluxes determining on convex and concave heat releasing surfaces for both annular channel and annular channel with swirl.

Keywords:

heat transfer crisis, a swirl, swirl and a transit flow

References

  1. Bogdanov F.F., Utkin O.I. Investigation of critical heat flows in narrov annular channels [Issledovanie kriticheskikh teplovykh potokov v uzkikh kol’tsevykh kanalakh]. Teploenergetika, 1969, no. 12. pp. 62–66. (In Russ.)
  2. Kamenshchikov F.T., Reshetov V.A., Ryabov A.N. et al. Voprosy mekhaniki vrashchayushchikhsya potokov i intensifikatsiya teploobmena v YaEU [Questions of the mechanisms of rotating flows and the intensification of heat transfer in YaEU]. Mosсow, 1984, 285 p. (In Russ.)
  3. Gambill W.R., Bundy B.D., Wansbrough R.W. Heat transfer, burnout and pressure drop for water in swirl flow through tubes with internal twisted tapes. Chemical Engineering Progress Symposium Series, 1959, ser. 57(32), p. 127.
  4. Iensen M.K. A correlation for predicting the critical heat flux condition with twisted-tape swirl generation. International Journal of Heat and Mass Transfer, 1984, vol. 27, no. 11, p. 2171.
  5. Krug A.F., Kuzma-Kichata Yu.A., Komendantov A.S. Obobshchenie dannykh po kriticheskim teplovym nagruzkam pri zakrutke potoka s pomoshch’yu lenty [Generalization of data on critical thermal loads during flow swirling with the help of a tape]. Teploenergetika, 2010, no. 3, pp. 46–51. (In Russ.)
  6. Shukin V.K. Теплообмен и гидродинамика внутренних потоков в полях массовых сил [Heat transfer and hydrodynamics of internal flows in the fields of body forces]. Moscow, 1980, 240 p. (In Russ.)
  7. Kalinin E.K., Dreytser G.A., Yarkho S.A. Intensifikatsiya teploobmena v kanalakh [Intensification of heat transfer in channels]. Moscow, 1990, 254 p. (In Russ.)
  8. Kuzma-Kichta Yu.A. Metody intensifikatsii teploobmena [Methods of Heat Transfer Enhancement]. Moscow, 2001, p. 215. (In Russ.)
  9. Boltenko E.A. Krizis teplootdachi i raspredelenie zhidkosti v parogeneriruyushchikh kanalakh [Heat transfer crisis and liquid distribution in steam-generating]. Moscow, 2015, 280 p. (In Russ.)
  10. Boltenko E.A. Krizis teploobmena v kol’tsevykh kanalakh s zakrutkoi potoka [The heat transfer crisis in annular channels with swirl flow]. Thermal Engineering, 2003, no. 11, pp. 25–30. (In Russ.)
  11. Boltenko D.E., Kirin N.N., Boltenko E.A. Determenetion of Void Fraction by Electrically Sounding Two-Phase Flow [Opredelenie istinnogo ob’emnogo parosoderzhaniya s pomoshch’yu elektrozondirovaniya dvukhfaznogo potoka]. Thermal Engineering, 2008, vol. 55, no. 4, pp. 331–335. (In Russ.)
  12. Boltenko E.A. Teploperedayushchee ustroistvo [Heat transfer device]. Patent Rossiiskaya Federatsiya no. 1540426 (1992).
  13. Boltenko E.A. Sposob povysheniya teplos’ema na vypuklykh teplootdayushchikh poverkhnostyakh teploperedayushchikh ustroistv i ustroistvo dlya ego osushchestvleniya [A method for increasing heat removal on convex heat releasing surfaces of heat transfer devices and a device for its implementation]. Patent Rossiiskaya Federatsiya no. 2680175 (2019).
  14. Boltenko E.A. The efficiency of heat transfer apparatuses with interacting swirled and transit flows. Thermal Engineering, 2019, vol. 66, no. 1, pp. 72–76.
  15. Boltenko E.A. Investigation of heat removal in annular channels with swirl and transit flow in the precrisis region. High Temperature, 2016, vol. 54, pp. 519–525.
  16. Boltenko E.A. Study of the Heat-Transfer crisis with swirl and Transit Flows. Thermal Engineering, 2016, vol. 63, no. 10, pp. 718–723.
  17. Kirillov P.L., Yur’ev Yu.S., Bobkov V.P. Spravochnik po teplogidravlicheskim raschetam (yadernye reaktory, teploobmenniki, parogeneratory) [Handbook of Thermal-Hydraulic Calculations (Nuclear Reactors, Heat Exchanger, and Vapor Generators)]. Moscow, 1990, 360 p. (In Russ.)
  18. Kuzma-Kichta Y.A., Leontiev A.I. Choice and justification of the heat transfer intensification methods. Journal of Enhanced Heat Transfer, 2018, vol. 25, no. 6, pp. 465–564.
  19. Dzyubenko B.V., Kuzma-Kichta Y.A., Leontiev A.I., Fedik I.I., Kholpanov L.P. Intensification of Heat and Mass Transfer on Macro-, Micro-, and Nanoscales. Begell House, Inc., 2016, 564 p.
  20. Alekseenko S.V., Volchkov E.P., Dzyubenko B.V., Dranugunov Yu.G., Isaev S.A. et al. Vikhrevye tekhnologii dlya energetiki [Vortex technologies for energy]. Moscow, 2017, 350 p. (In Russ.)
  21. Leont’ev A.I., Kuzma-Kichta Y.A., Popov I.A. Heat and mass transfer and hydrodynamics in swirling flows (review). Thermal Engineering, 2017, vol. 64(2), pp. 111–126.
  22. Boltenko E.A., Davydov M.V. Krizis teplootdachi i raspredelenie zhidkosti v puchkakh sterzhnei v oblasti dispersno-kol’tsevogo rezhima techeniya [Heat transfer crisis and liquid distribution in rod bundles in field of dispersedring flow regime]. Thermal processes in engineering, 2020, vol. 12, no. 4, pp. 146–154. (In Russ). DOI: 10.34759/tpt-2020-12-4-146-154
  23. Boltenko E.A, Shpacovscky A.A. Krizis teplootdachi i raspredelenie zhidkosti mezhdu yadrom potoka i pristennymi plenkami v uzkikh shchelevykh kanalakh [Heat transfer crisis and liquid distribution in narrow slit channels]. Thermal Engineering, 2010, vol. 3, pp. 52–59. (In Russ)

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI