Internal heat exchange effect on the thermal decomposition of carbonates in the phosphorus-containing raw materials


Аuthors

Orekhov V. A.*, Bobkov V. I.**

Branch of the National Research University Moscow Power Engineering Institute in Smolensk, Smolensk, Russia

*e-mail: fundukoff@mail.ru
**e-mail: vovabobkoff@mail.ru

Abstract

The article considers the effect of Phosphorus-Containing Raw Materials heating rate on the chemical-energy-technological processes of carbonates thermal dissociation being in progress while its high-temperature firing. The study was being conducted for the temperature ranges of the existing roast and sintering machines with account for microkinetics of the baking processes. Significant effect of the phosphatic rocks samples heating rate on the carbonates thermal decomposition kinetics was revealed. The authors proposed mathematical model that allows accounting for the wide range of kinetic equations parameters changing of chemical-energy-technological processes of carbonates dissociation. A series of computational experiments aimed at revealing dependencies between the phosphor-containing ore samples heating rate and evolution of carbonates concentration fields, transformation rate and temperature gradients was performed. The results of the study may be applied for elaborating optimal functioning modes of sintering and firing machines from the viewpoint energy-resource effectiveness.

Keywords:

phosphorus-containing ore, ore enrichment, firing, dissociation of carbonates, temperature, thermal decomposition, heat-mass exchange

References

  1. Li J., An H.-F., Liu W.-X., Yang A.-M., Chu M.-S. Effect of basicity on metallurgical properties of magnesium fluxed pellets. Journal of Iron and Steel Research International, 2020, no. 27(3), pp. 239–247.
  2. Kavchenkov V.P., Kavchenkova E.V., Chernenkov I.D. Modeling of the relationship between the earth population growth and the electric energy production processes. Journal of Applied Informatics, 2021, vol. 16, no. 4 (94), pp. 110–121. DOI: 10.37791/2687-0649-2021-16-4-110-121.
  3. Wang S., Guo Y., Zheng F., Chen F., Yang L. Improvement of roasting and metallurgical properties of fluorine-bearing iron concentrate pellets. Powder Technology, 2020, 376, pp. 126–135.
  4. Il’in I.V., Lyovina A.I., Kalyazina S.E. Function-oriented approach to mining enterprise automation. Journal of applied informatics, 2022, vol. 17, no. 2, pp. 5–19. DOI: 10.37791/ 2687-0649-2022-17-2-5-19
  5. Nayak D., Ray N., Dash N., Pati S., De P.S. Induration aspects of low-grade ilmenite pellets: Optimization of oxidation parameters and characterization for direct reduction application. Powder Technology, 2021, vol. 380. pp. 408–420.
  6. Kossoy A. Effect of thermal inertia-induced distortions of DSC data on the correctness of the kinetics evaluated. Journal of Thermal Analysis and Calorimetry, 2021, vol. 143, no. 1, pp. 599–608.
  7. Kurilin S.P., Sokolov A.M., Prokimnov N.N. Komp’yuternaya programma dlya modelirovaniya pokazatelej tekhnicheskogo sostoyaniya elektromekhanicheskih system [Computer program for modeling indicators of the technical condition of electromechanical systems]. Prikladnaya informatika, 2022, vol. 17, no. 2, pp. 105–119. (In Russ.). DOI: 10.37791/ 2687-0649-2022-17-2-105-119
  8. Tian H., Pan J., Zhu D., Wang D., Xue Y. Utilization of Ground Sinter Feed for Oxidized Pellet Production and Its Effect on Pellet Consolidation and Metallurgical Properties. Minerals, Metals and Materials Series. 11th International Symposium on High-Temperature Metallurgical Processing, 2020, pp. 857–866.
  9. Matkarimov S.T., Berdiyarov B.T., Yusupkhodjayev A.A. Technological parameters of the process of producing metallized iron concentrates from poor raw material. International Journal of Innovative Technology and Exploring Engineering, 2019, no. 8(11), pp. 600–603.
  10. Puchkov A.Yu., Lobaneva E.I., Kultygin O.P. Algoritm prognozirovaniya parametrov sistemy pererabotki othodov apatit-nefelinovyh rud [Algorithm for predicting the parameters of the apatite-nepheline ore waste processing system]. Prikladnaya informatika, 2022, vol. 17, no. 1, pp. 55–68. (In Russ.) DOI: 10.37791/2687-0649-2022-17-1-55-68
  11. Akberdin A.A., Kim A.S., Sultangaziev R.B. Experiment Planning in the Simulation of Industrial Processes. Steel in Translation, 2018, no. 48(9), pp. 573–577.
  12. Dli M.I., Vlasova E.A., Sokolov A.M., Morgunova E.V. Creation of a chemical-technological system digital twin using the Python language. Journal of Applied Informatics, 2021, vol. 16, no. 1 (91), pp. 22–31. DOI: 10.37791/2687-0649-2021-16-1-22-31
  13. Kossoj A.A., Lopatin A.V. Reakcionnaya kalorimetriya: osnovnye tipy, prostaya teoriya i primenenie dlya issledovaniya kinetiki reakcij. Himicheskaya promyshlennost’, 2020, vol. 97, no. 4, pp. 188–198.
  14. Yang C.-C., Zhu D.-Q., Pan J., Zhou B.-Z., Xun H. Oxidation and Induration Characteristics of Pellets Made from Western Australian Ultrafine Magnetite Concentrates and Its Utilization Strategy. Journal of Iron and Steel Research International, 2017, no. 23(9), pp. 924–932.
  15. Pancnehko S.V., Bobkov V.I., Fedulov A.S., Chernovalova M.V. Mathematical modelling of thermal and physical-chemical processes during sintering. Non-Ferrous Metals, 2018, vol. 45, no. 2, pp. 50–55.
  16. Meshalkin V.P., Khodchenko S.M., Bobkov V.I., Dli M.I. Computer modeling of the chemical-power engineering process of roasting of a moving multilayer mass of phosphorite pellets. Doklady Chemistry, 2017, vol. 477, no. 2, pp. 282–285.
  17. Bobkov V.I. Phosphorites electric conductivity and structures specifics at high temperature heating. Thermal processes in engineering, 2018, vol. 10, no. 1–2, pp. 77–83. (In Russ.)
  18. Orekhov V.A., Bobkov V.I. Eksperimental’naya metodika issledovaniya kinetiki termicheskoj dekarbonizacii pri nalichii gradientov temperatur v issleduemyh obrazcah [Experimental method for studying the kinetics of thermal decarbonization in the presence of temperature gradients in the samples under study]. Teplovye processy v tekhnike, 2022, vol. 14, no. 6, pp. 261–267. (In Russ.). DOI: 10.34759/ tpt-2022-14-6-261-267
  19. Shvydkii V.S., Yaroshenko Y.G., Spirin N.A., Lavrov V.V. Modeling of metalized pellets firing with the account of physico-chemical transformations in them. Izvestiya Ferrous Metallurgy, 2018, no. 61(4), pp. 288–293.
  20. Tian Y., Qin G., Zhang Y., Zhao L., Yang T. Experimental research on pellet production with boron-containing concentrate. Characterization of Minerals, Metals, and Materials. Springer: The Minerals, Metals & Materials Series. 2020. pp. 91–102.
  21. Yaroshenko Y.G. Thermal physics as the basis for energy and resource conservation in steelmaking. Steel in Translation, 2017, vol. 47, pp. 505–516.
  22. Bobkov V.I. Osobennosti teplovyh processov pri aglomeracii fosfatnogo syr’ya [Features of thermal processes during agglomeration of phosphate raw materials]. Thermal processes in engineering, 2017, vol. 9, no. 1, pp. 40–46. (In Russ.)

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI