Topological and physico-chemical analysis of deposits on the heat exchange equipment working surfaces


Аuthors

Lasitsa A. M.1*, Batrakov P. A.1**, Averchenko A. P.1***, Peshko M. S.1****, Poleschenko K. N.2*****, Semenyuk N. A.1

1. Omsk State Technical University, 11, prospect Mira, Omsk, 644050, Russia
2. The Siberian State Automobile and Highway University, Omsk, Russia, prospect Mira, 5, 644080

*e-mail: amlasitsa@gmail.com
**e-mail: pabatrakov@omgtu.ru
***e-mail: apaverchenko@omgtu.ru
****e-mail: mspeshko@omgtu.ru
*****e-mail: k_poleschenko@mail.ru

Abstract

The article considers the process of deposits forming on the walls of the heat exchange equipment. The elemental composition and structure of the deposits have been studied by the X-ray fluorescence analysis (XRF) and scanning electron microscopy (SEM). Analysis of physical and chemical processes contributing to the deposits formation was performed. The authors suggest considering the deposits forming process as the heat exchanging equipment surface topology changing process, and employ the fractal dimensionality as the qualitative characteristic of the said process. Integral equation describing the deposits forming process was obtained within the framework of the linear model.

Keywords:

corrosion deposits, heat exchange equipment, corrosion kinetics, topological models, fractal analysis

References

  1. Kuznetsov G.V., Ozerova I.P., Polovnikov V.Yu., Tsygankova Yu.S. Ocenka fakticheskih poter’ tepla pri transportirovke teplonositelya s uchetom tekhnicheskogo sostoyaniya i real’nyh uslovij ekspluatacii teplovyh setej [Estimation of actual heat losses during transportation of the coolant, taking into account the technical condition and actual operating conditions of thermal networks]. Bulletin of the Tomsk Polytechnic University. Engineering of georesources, 2011, vol. 319, no. 4, pp. 56–60.
  2. Peshko M.S., Batrakov P.A., Lasitsa A.M., Khomchenko V.S. Technological wear influence analysis on the decrease in the efficiency of a closed loop control of heat exchange equipment. Proceedings of the 33rd International DAAAM Virtual Symposium «Intelligent Manufacturing & Automation» (27—28th October 2022). Hosted from Vienna University of Technology (Vienna, Austria), 2022, vol. 33, no. 1, pp. 0271–0278. DOI: 10.2507/33rd.daaam.proceedings.037
  3. Crolet J.L. The electrochemistry of corrosion beneath corrosion deposits. Journal of materials science, 1993, vol. 28, no. 10, pp. 2577–2588.
  4. Faes W., Lecompte S., Zaaquib Y., Van Bael J., Salenbien R., Verbeken K., De Paepe M. Corrosion and corrosion prevention in heat exchangers. Corrosion reviews, 2019, vol. 37, no. 2, pp. 131–155.
  5. Kuchař J., Kreibich V., Agartanov V., Petřík V. Maintenance and Cleaning of Heat Materials Science Forum. Trans Tech Publications Ltd, 2018, vol. 919, pp. 396–403.
  6. Kuzbozhev A.S., Shishkin I.V., Kozlov D.I. Modelirovanie raspredeleniya napryazhenij v sloe zashchitnogo pokrytiya [Modelling of stress distribution in the protective coating layer]. Praktika protivokorrozionnoj zashchity, 2013, no. 4, pp. 18–23.
  7. Terebilov S.V., Batrakov P.A., Taran M.A., Afanaseva O.V., Selivanov A.A., Vdovenko I.A. Improving the reliability of the fluorotrube boiler work, by reducing the amount of deposits on the heating surface. Vestnik Kazanskogo gosudarstvennogo energeticheskogo universiteta, 2020, vol. 12, no. 2 (46), pp. 54–60.
  8. Markel V.A., Shalaev V.M., Stechel E.B., Kim W., Armstrong R.L. Small-particle composites. I. Linear optical properties. Physical Review B, 1996, vol. 53, no. 5, pp. 2425–2436. DOI: https://doi.org/10.1103/PhysRevB.53.2425
  9. Van Put A., Vertes A., Wegrzynek D., Treiger B., Van Grieken R. Quantitative characterization of individual particle surfaces by fractal analysis of scanning electron microscope images. Fresenius’ journal of analytical chemistry, 1994, vol. 350, no. 7–9, pp. 440–447.
  10. Ivanov D.V., Vasiliev S.A., Sdobnyakov N.Yu., Romanovskaya E.V., Anofriev V.A., Koshelev V.A., Antonov A.S. Simulation of the fractal metal films formation. Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials, 2020, iss. 12, pp. 424–437. DOI: 10.26456/pcascnn/2020.12.424
  11. Surikov V.I., Rogachev E.A., Lasitsa A.M. Relationship Between Physical and Mechanical Properties of a Polymer Composite and Fractal Dimension of Structural Elements of its Surface. Russian Physics Journal, 2021, vol. 64, no. 7, pp. 1232–1238. DOI: 10.1007/s11182-021-02449-5
  12. Poleshchenko K.N., Korotaev D.N., Eremin E.N., Nesov S.N., Tarasov E.E., Teploukhov A.A., Semenyuk N.A., Ivanova E.V., Lasitsa A.M., Ivanov A.L. Formation of nanostructured topocomposites with cluster-gradient architecture by combined ion-vacuum processing. Vestnik of Nosov Magnitogorsk State Technical University, 2021, vol. 19, no. 2, pp. 68–78.
  13. Kutz M. Handbook of environmental degradation of materials. New York, William Andrew, 2018, 684 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI