Stationary thermal-mechanical processes physical and numerical modeling in the piston engine exhaust system


Аuthors

Plotnikov L. V.*, Desyatov K. O.**, Davydov D. A.***, Krasilnikov D. N.****

Ural Federal University named after the first President of Russia B.N. Yeltsin, 19, Mira str., Ekaterinburg, 620002, Russia

*e-mail: leonplot@mail.ru
**e-mail: iwan.logo2018@yandex.ru
***e-mail: dda_2003@bk.ru
****e-mail: dima_krasilnikov_2017@mail.ru

Abstract

The article considers the exhaust system improvement of the piston engine by mathematical modeling and experimental studies of gas-dynamic and heat exchange characteristics of gas flows. The laboratory experiments revealed that profiled channels application in the exhaust system led to the turbulence intensity reduction up to 25%, and heat release suppression up to 10–21% compared to the basic configuration. The article demonstrates the existence of qualitative agreement of the results of mathematical modeling and experimental studies.

Keywords:

piston engine, exhaust system, profiled channels, stationary turbulent flow, turbulence intensity, local heat transfer, modeling and experiment

References

  1. Ghojel J. Fundamentals of Heat Engines (Reciprocating and Gas Turbine Internal Combustion Engines). USA, Wiley-ASME Press Series, 2020, 532 p.

  2. Plotnikov L.V. Nestacionarnye teplomekhanicheskie processy v sistemah gazoobmena porshnevyh dvigatelej s turbonadduvom: monografiya [Non-stationary thermomechanical processes in gas exchange systems of turbocharged reciprocating engines: monograph]. Ed. by B.P. Zhilkin, Yu.M. Brodov. Yekaterinburg, Izdatel’stvo Ural’skogo universiteta, 2020, 204 p. (In Russ.)

  3. Iacovano C., d’Adamo A., Fontanesi S., Ilio G.D., Krastev V.K. Application of a zonal hybrid URANS/LES turbulence model to high and low resolution grids for engine simulation. International Journal of Engine Research, 2019, vol. 22 (8), pp. 2745–2764.

  4. Buhl S., Hain D., Hartmann F., Hasse C. A comparative study of intake and exhaust port modeling strategies for scale-resolving engine simulations. International Journal of Engine Research, 2018, vol. 19 (3), pp. 282–292.

  5. Onishchenko D.O., Pankratov S.A., Ryzhov V.A. Trekhmernoe modelirovanie rabochego processa sredneoborotnogo dizelya i ego primenenie dlya analiza vozmozhnosti snizheniya koncentracii oksidov azota v otrabotavshih gazah putem izmeneniya formy kamery sgoraniya [Three-dimensional modeling of the working process of a medium-speed diesel engine and its application to analyze the possibility of reducing the concentration of nitrogen oxides in exhaust gases by changing the shape of the combustion chamber]. Thermal Processes in Engineering, 2016, vol. 8, no. 6, pp. 264–271.

  6. Rota C., Morgan R.E., Mustafa K., Osborne R., Matrisciano A. Process for an efficient heat release prediction at the concepts screening stage of gasoline engine development. International Journal of Engine Research, 2021, vol. 22 (8), pp. 2502–2520.

  7. Ravindran A.C., Kokjohn S.L., Petersen B. Improving computational fluid dynamics modeling of Direct Injection Spark Ignition cold-start. International Journal of Engine Research, 2021, vol. 22 (9), pp. 2786–2802.

  8. Wang T.J. Optimum design for intake and exhaust system of a heavy-duty diesel engine by using DFSS methodology. Journal of Mechanical Science and Technology, 2018, vol. 32 (7), pp. 3465–3472.

  9. Simonetti M., Caillol C., Higelin P., Dumand C., Revol E. Experimental investigation and 1D analytical approach on convective heat transfers in engine exhaust-type turbulent pulsating flows. Applied Thermal Engineering, 2020, vol. 165, Article number 114548. DOI: 10.1016/j.applthermaleng.2019.114548

  10. Cerdoun M., Khalfallah S., Beniaiche A., Carcasci C. Investigations on the heat transfer within intake and exhaust valves at various engine speeds. International Journal of Heat and Mass Transfer, 2020, vol. 147. Article number 119005. DOI: 10.1016/j.ijheatmasstransfer.2019.119005

  11. Bae M.W., Ku Y.J., Park H.S. A Study on Effects of Tuning Intake and Exhaust Systems Upon Exhaust Emissions in A Driving Car of Gasoline Engine. Transactions of the Korean Society of Mechanical Engineers B, 2019, vol. 43 (5), pp. 379–388.

  12. Arnau F.J., Martin J., Pla B., Aunon A. Diesel engine optimization and exhaust thermal management by means of variable valve train strategies. International Journal of Engine Research, 2021, vol. 22 (4), pp. 1196–1213.

  13. Jang J., Woo Y., Jung Y., Cho C., Kim G., Pyo Y., Han M., Lee S. Research for intake and exhaust system parameterization of 2-cylinder gasoline engine for RE-EV. International Journal of Energy Research, 2018, vol. 42 (13), pp. 4256–4256.

  14. Ma C.-C., Sun L.-W., Fang N., Zhang H. Effects of the Exhaust System on the Performance of a Turbocharged Diesel Engine. Transaction of Beijing Institute of Technology, 2017, vol. 37 (9), pp. 919–925.

  15. Kumar M., Moeeni S., Kuboyama T., Moriyoshi Y. Performance improvement of turbocharged SI engine by post oxidation enhancement in exhaust gas in-homogeneity. International Journal of Engine Research, 2021, vol. 22 (9), pp. 2931–2944.

  16. Plotnikov L.V. Experimental research into the methods for controlling the thermal-mechanical characteristics of pulsating gas flows in the intake system of a turbocharged engine model. International Journal of Engine Research, 2022, vol. 23 (2), pp. 334–344.

  17. Leahu C.I. Improvement of exhaust gas pressure’s utilization for compressing the intake air in diesel engine’s cylinders. International Journal of Automotive Technology, 2015, vol. 16 (6), pp. 913–921.

  18. Plotnikov L.V., Grigoriev N.I., Osipov L.E., Desyatov K.O. Raschetno-eksperimental’naya ocenka intensivnosti teplootdachi stacionarnyh potokov gaza v trubah s raznymi poperechnymi secheniyami s uchetom turbulizacii techeniya [Computational and experimental estimation of the intensity of heat transfer of stationary gas flows in pipes with different cross sections, taking into account flow turbulence]. Thermal Processes in Engineering, 2022, vol. 14, no. 5, pp. 218–224. (In Russ.)

  19. Plotnikov L.V., Bernasconi S., Brodov Y.M. The effects of the intake pipe configuration on gas exchange, and technical and economic indicators of diesel engine with the 21/21 dimension. Procedia Engineering, 2017, vol. 206, pp. 140–145.

  20. Karimov K.F., Degtyarev L.V., Tarasevich S.E. Chislennoe issledovanie techeniya odnofaznoj sredy v povorotah pri nalichii vhodnogo i vyhodnogo uchastkov [Numerical study of the flow of a single-phase medium in turns in the presence of inlet and outlet sections]. Thermal Processes in Engineering, 2022, vol. 14, no. 7, pp. 318–324. (In Russ.). DOI: 10.34759/tpt-2022-14-7-318-324

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI