The authors conducted a comprehensive study of the heat transfer during condensation of the saturated steam on the external surface of a vertical tube. The experiment conjoined capabilities of the gradient heatmetry, temperature measurement and flow visualization. Mass-flow rate of the saturated steam varied within the range from 0.55 to 2.22 g/s with 0.55 g/s increment. It was revealed that steam condensation might occur in a drop-stream or film condensation mode depending on the steam mass-flow rate on the tube surface. Time thermogramms and heat-graphs comparison confirmed the high informativity of gradient heatmetry while studying and monitoring non-stationary heat transfer in condensers of condensers of power and refrigeration plants.
Ji W.-T., Chong G.-H., Zhao Ch.-Y., Zhang H., Tao W.-Q. Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes. International Journal of Refrigeration, 2018, vol. 93, pp. 259–268. DOI: 1016/j.ijrefrig.2018.06.013
Gao Y., Cheng H., Li W., Kukulka D. J., Smith R. Condensation Flow and Heat Transfer Characteristics of R410A in Micro-Fin Tubes and Three-Dimensional Surface Enhanced Tubes. Energies, 2022, vol. 15, 2951. DOI: 3390/en15082951
Fan G., Tong P., Sun Z., Chen Y. Development of a new empirical correlation for steam condensation rates in the presence of air outside vertical smooth tube. Annals of Nuclear Energy, 2018, vol. 113, pp. 139–146. DOI: 1016/j.anucene.2017.11.021
Swartz M. M., Yao Sh.-Ch. Experimental study of turbulent natural-convective condensation on a vertical wall with smooth and wavy film interface. International Journal of Heat and Mass Transfer, 2017, vol. 113, pp. 943- DOI: 10.1016/j.ijheatmasstransfer.2017.04.076
Lee Y.G., Jang Y.J., Choi D.J. An experimental study of air-steam condensation on the exterior surface of a vertical tube under natural convection conditions. International Journal of Heat and Mass Transfer, 2017, vol. 104, pp. 1034–1047. DOI: 1016/j.ijheatmasstransfer.2016.09.016
Kim S.J., No H.C. Turbulent film condensation of high pressure steam in a vertical tube. International Journal of Heat and Mass Transfer, 2000, vol. 43, pp. 4031–4042. DOI: 1016/S0017-9310(00)00015-6
Chen R., Zhang P., Ma P., Tan B., Wang Z., Zhang D., Su G.H. Experimental investigation of steam-air condensation on containment vessel. Annals of Nuclear Energy, 2020, vol. 136, 107030. DOI: 1016/j.anucene.2019.107030
Lel V.V., Al-Sibai F., Leefken A., Renz U. Local thickness and wave velocity measurement of wavy films with a chromatic confocal imaging method and a fluorescence intensity technique. Experiments in Fluids, 2005, vol. 39, pp. 856–864. DOI: 1007/s00348-005-0020-x
Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V. Heatmetry: The Science and Practice of Heat Flux Measurement. Springer International Publishing, 2020, 209 p.
Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V., Gusakov A.A., Zainullina E.R., Grekov M.A., Seroshtanov V.V., Bashkatov A.V., Babich A.Yu., Pavlov A.V. Gradient Heatmetry Advances. Energies, 2020, vol. 13, 6194. DOI: 3390/en13236194
Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V., Gusakov A.A., Pavlov A.V., Bobylev P.G. Investigation of boiling on the sphere surface by the gradient heatmetry. Thermal processes in engineering, 2021, vol. 13, no 10, pp. 434-441. (In Russ.). DOI: 10.34759/tpt-2021-13-10-434-441
Bobylev P.G., Pavlov A.V., Proskurin V.M., Andreyev Y.V., Mityakov V.Y., Sapozhnikov S.Z. Gradient Heatmetry in a Burners Adjustment. Inventions, 2022, vol. 7, 122. DOI: 3390/inventions7040122
Seroshtanov V., Gusakov A. Gradient Heatmetry and PIV Investigation of Heat Transfer and Flow near Circular Cylinders. Inventions, 2022, vol. 7, 80. DOI: 3390/inventions7030080
Mityakov V.Yu., Zainullina E.R., Sapozhnikov S.Z., Grekov M.A. Issledovanie kapel’no-rucheikovoi kondensatsii metodom gradientnoi teplometrii [Investigation of drip-stream condensation by the gradient heatmetry]. Materialy Vos’moi Rossiiskoi natsional’noi konferentsii po teploobmenu [Materials of the Eighth Russian National Conference on Heat Transfer. Conference materials]. In 2 vо Vol. 1. Moscow, 2022, pp. 325-326.
Summ B.D., Goryunov Yu.V. Fiziko-khimicheskie osnovy smachivaniya i rastekaniya [Physico-chemical bases of wetting and spreading]. Moscow, Chemistry, 1976, 232 p. (In Russ.)
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |