Heat transfer monitoring during condensation by gradient heatmetry


Аuthors

Zainullina E. R.1*, Mityakov V. Y.2**

1. Peter the Great Saint-Petersburg Polytechnic University, 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia
2. Peter the Great St. Petersburg Polytechnic University, 29, Polytechnicheskaya str., St. Petersburg, 195251, Russia

*e-mail: zajnullina_er@spbstu.ru
**e-mail: mitvlad@mail.ru

Abstract

The authors conducted a comprehensive study of the heat transfer during condensation of the saturated steam on the external surface of a vertical tube. The experiment conjoined capabilities of the gradient heatmetry, temperature measurement and flow visualization. Mass-flow rate of the saturated steam varied within the range from 0.55 to 2.22 g/s with 0.55 g/s increment. It was revealed that steam condensation might occur in a drop-stream or film condensation mode depending on the steam mass-flow rate on the tube surface. Time thermogramms and heat-graphs comparison confirmed the high informativity of gradient heatmetry while studying and monitoring non-stationary heat transfer in condensers of condensers of power and refrigeration plants.

Keywords:

gradient heatmetry, gradient heat flux sensors, condensation heat transfer, saturated water steam condensation, condensation heat transfer monitoring

References

  1. Li J., Wang H.F., Sang Z.F. Enhanced Condensation Outside Horizontal Heat Transfer Tubes. AIP Conference Proceedings, 2010, vol. 1207, pp. 628–633. DOI: 10.1063/1.3366439

  2. Ji W.-T., Chong G.-H., Zhao Ch.-Y., Zhang H., Tao W.-Q. Condensation heat transfer of R134a, R1234ze(E) and R290 on horizontal plain and enhanced titanium tubes. International Journal of Refrigeration, 2018, vol. 93, pp. 259–268. DOI: 1016/j.ijrefrig.2018.06.013

  3. Gao Y., Cheng H., Li W., Kukulka D. J., Smith R. Condensation Flow and Heat Transfer Characteristics of R410A in Micro-Fin Tubes and Three-Dimensional Surface Enhanced Tubes. Energies, 2022, vol. 15, 2951. DOI: 3390/en15082951

  4. Fan G., Tong P., Sun Z., Chen Y. Development of a new empirical correlation for steam condensation rates in the presence of air outside vertical smooth tube. Annals of Nuclear Energy, 2018, vol. 113, pp. 139–146. DOI: 1016/j.anucene.2017.11.021

  5. Swartz M. M., Yao Sh.-Ch. Experimental study of turbulent natural-convective condensation on a vertical wall with smooth and wavy film interface. International Journal of Heat and Mass Transfer, 2017, vol. 113, pp. 943- DOI: 10.1016/j.ijheatmasstransfer.2017.04.076

  6. Lee Y.G., Jang Y.J., Choi D.J. An experimental study of air-steam condensation on the exterior surface of a vertical tube under natural convection conditions. International Journal of Heat and Mass Transfer, 2017, vol. 104, pp. 1034–1047. DOI: 1016/j.ijheatmasstransfer.2016.09.016

  7. Kim S.J., No H.C. Turbulent film condensation of high pressure steam in a vertical tube. International Journal of Heat and Mass Transfer, 2000, vol. 43, pp. 4031–4042. DOI: 1016/S0017-9310(00)00015-6

  8. Chen R., Zhang P., Ma P., Tan B., Wang Z., Zhang D., Su G.H. Experimental investigation of steam-air condensation on containment vessel. Annals of Nuclear Energy, 2020, vol. 136, 107030. DOI: 1016/j.anucene.2019.107030

  9. Lel V.V., Al-Sibai F., Leefken A., Renz U. Local thickness and wave velocity measurement of wavy films with a chromatic confocal imaging method and a fluorescence intensity technique. Experiments in Fluids, 2005, vol. 39, pp. 856–864. DOI: 1007/s00348-005-0020-x

  10. Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V. Heatmetry: The Science and Practice of Heat Flux Measurement. Springer International Publishing, 2020, 209 p.

  11. Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V., Gusakov A.A., Zainullina E.R., Grekov M.A., Seroshtanov V.V., Bashkatov A.V., Babich A.Yu., Pavlov A.V. Gradient Heatmetry Advances. Energies, 2020, vol. 13, 6194. DOI: 3390/en13236194

  12. Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V., Gusakov A.A., Pavlov A.V., Bobylev P.G. Investigation of boiling on the sphere surface by the gradient heatmetry. Thermal processes in engineering, 2021, vol. 13, no 10, pp. 434-441. (In Russ.). DOI: 10.34759/tpt-2021-13-10-434-441

  13. Bobylev P.G., Pavlov A.V., Proskurin V.M., Andreyev Y.V., Mityakov V.Y., Sapozhnikov S.Z. Gradient Heatmetry in a Burners Adjustment. Inventions, 2022, vol. 7, 122. DOI: 3390/inventions7040122

  14. Seroshtanov V., Gusakov A. Gradient Heatmetry and PIV Investigation of Heat Transfer and Flow near Circular Cylinders. Inventions, 2022, vol. 7, 80. DOI: 3390/inventions7030080

  15. Mityakov V.Yu., Zainullina E.R., Sapozhnikov S.Z., Grekov M.A. Issledovanie kapel’no-rucheikovoi kondensatsii metodom gradientnoi teplometrii [Investigation of drip-stream condensation by the gradient heatmetry]. Materialy Vos’moi Rossiiskoi natsional’noi konferentsii po teploobmenu [Materials of the Eighth Russian National Conference on Heat Transfer. Conference materials]. In 2 vо Vol. 1. Moscow, 2022, pp. 325-326.

  16. Summ B.D., Goryunov Yu.V. Fiziko-khimicheskie osnovy smachivaniya i rastekaniya [Physico-chemical bases of wetting and spreading]. Moscow, Chemistry, 1976, 232 p. (In Russ.)

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI