Experimental study of combustion in the systems of inverted diffusion jets with swirl


Аuthors

Evdokimov O. A.*, Zhizhin E. V.

Rybinsk State Aviation Technical University named after P.A. Soloviev, RSATU, 53, Pushkin St., Rybinsk, Yaroslavl region, 152934, Russia

*e-mail: yevdokimov_oleg@mail.ru

Abstract

The article considers specifics of combustion in the arrays of inverted jets with swirl, which rep- resent coaxial fuel flow (along the periphery) and air flow (along the axis) with the swirl of the latter and form a diffusion flame with partial mixing at the initial section. The results revealed that the main factor determining the combustion intensity in the individual inverted jet is the effluence mode of its air component. Interaction of elementary flows between each other additionally significantly effects, in case combustion organizing of such jets array. It manifests most strongly in the fuel-rich area by the value of excess-air factor α < 1. Besides, com- bustion stability in the inverted jets array increases by the value up to 20 %, which allows increasing thermo- dynamic efficiency of the fuel-firing arrangements and their weight and size reduction.

Keywords:

swirling flow, inverted diffusion flame, array of jets, flame blowout, combustion stability

References

  1. Bardos A., Walters K.M., Boutross M.G., Lee S., Ed- wards C.F., Bowman C.T. Effects of Pressure on Performance of Mesoscale Burner Arrays for Gas-Turbine Applications. Journal of Propulsion and Power, 2007, vol. 23, no. 4, pp. 884–886. DOI: 10.2514/1.26255

  2. Choi J., Rajasegar R., Mitsingas C.M., Liu Q., Lee T., Yoo J. Effect of flame interaction on swirl-stabilized mesoscale burner array performance. Energy, 2020, vol. 192, article 116661. DOI: 10.1016/j.energy.2019.116661

  3. Rajasegar R., Choi J., McGann B., Oldani A., Lee T., Hammack S.D., Carter C.D., Yoo J. Mesoscale burner array performance analysis. Combustion and Flame, 2019, vol. 199, pp. 324–337. DOI: 10.1016/j.combustflame.2018.10.020

  4. Liu W., Ge B., Tian Y., Yuan Y., Zang S., Weng S., Zhang D., Cui Y. Experimental and Numerical Investigations of Low-Swirl Multi-Nozzle Combustion in a Lean Premixed Combustor. Volume 4A: Combustion, Fuels and Emissions. ASME Turbo Expo 2014: Turbine Technical Conference and Exposition (June 16–20, 2014, Düsseldorf, Germany). American Society of Mechanical Engineers, 2014. URL: https://asmedigitalcollection.asme.org/GT/proceedingsabstract/GT2014/45684/V04AT04A045/234971

  5. Lee T., Kim K.T. Direct Comparison of self-excited instabi lities in mesoscale multinozzle flames and conventional large-scale swirl-stabilized flames. Proceedings of the Com bustion Institute, 2021, vol. 38, iss. 4, pp. 6005-6013. URL: https://www.sciencedirect.com/science/article/pii/S1540748920300973

  6. Kuntikana P., Prabhu S.V. Thermal Investigations on Methane-Air Premixed Flame Jets of Multi-Port Burners. Energy, 2017, vol. 123, pp. 218–228. DOI: 10.1016/j.energy.2017.01.122

  7. Lee T., Kim K.T. Combustion dynamics of lean fully- premixed hydrogen-air flames in a mesoscale multinozzle array. Combustion and Flame, 2020, vol. 218, pp. 234–246. DOI: 10.1016/j.combustflame.2020.04.024

  8. Ruan C., Chen F., Yu T., Cai W., Li X., Lu X. Experimental study on flame/flow dynamics in a multi-nozzle gas turbine model combustor under thermo-acoustically unstable condition with different swirler configurations. Aerospace Science and Technology, 2020, vol. 98, article 105692. DOI: 10.1016/j.ast.2020.105692

  9. Cozzi F., Coghe A. Effect of air staging on a coaxial swirled natural gas flame. Experimental Thermal and Fluid Science, 2012, vol. 43, рр. 32–39. DOI: 10.1016/j.expthermflusci.2012.04.002

  10. Evdokimov O.A. The structure of coaxial buoyant jets with swirl and combustion. International Journal of Energy for a Clean Environment, 2019, vol. 20, no. 4, pp. 339–350. URL: https://www.dl.begellhouse.com/journals/6d18a859536a7b02,337dcb6d4c7b3503,14f591bb14ef70ea.html

  11. Elbaz A.M., Roberts W.L. Flame structure of methane inverse diffusion flame. Experimental Thermal and Fluid Science, 2014, vol. 56, pp. 23–32. DOI: 10.1016/j.expthermflusci.2013.11.011

  12. Patel V., Shah R. Experimental investigation on flame appearance and emission characteristics of LPG inverse diffusion flame with swirl. Applied Thermal Engineering, 2018, vol. 137, pp. 377–385. DOI: 10.1016/j.applthermaleng.2018.03.105

  13. Evdokimov O.A., Guryanov A.I., Prokhorov D.A. An Experimental Study on Combustion in Mesoscale Coaxial Swirling Burner Arrays. Combustion Science and Technology, 2022, pp. 1–22. DOI: 10.1080/00102202.2022.2111213

  14. Li H., Chen X., Shu C.-M., Wang Q., Zhang Y. Experimental and numerical investigation of the influence of laterally sprayed water mist on a methane-air jet flame. Chemical Engineering Journal, 2019, vol. 356, pp. 554–569. URL: https://www.sciencedirect.com/science/article/pii/S1385894718317601
  15. Evdokimov O.A., Guryanov A.I., Veretennikov S.V., Muhommedov U.P., Shaykina A.A. An experimental study of a bidirectional vortex combustor with two-stage air supply. Thermal processes in engineering, 2023, vol. 15, no. 1, pp. 3–12. (In Russ.). DOI: 10.34759/tpt-2023-15-1-3-12

  16. Evdokimov O.A., Guryanov A.I., Veretennikov S.V., Koshkin V.I., Arkharova N.A. A Numerical Study on Com- bustion in Arrays of Bidirectional Swirling Jets. International Journal of Energy for a Clean Environment, 2023. DOI: 10.1615/InterJEnerCleanEnv.2023047724

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI