The article presents a mathematical model of microwave heating of a rigid airfield coating deformation joint. The temperature field development was studied numerically based on the intensity distribution computing of the electric field intensity being created by the radiation source. The simulation results are being compared and confirmed by the experimental data obtained by direct measurements in a specially developed mock-up microwave heating system.
Dornyak O.R., Nedonoskov A.B. Sposob termoobrabotki deformacionnogo shva aerodromnogo pokrytiya s ispol’zovaniem SVCH-vozdejstviya [Method of heat treat- ment of the deformation seam of the airfield coating using microwave action]. Vozdushno-kosmicheskie sily. Teoriya i praktika, 2021, no. 17, pp. 66–75. (In Russ.).
Nedonoskov A.B., Dornyak O.R. SVCH-ustanovka dlya termoobrabotki deformacionnyh shvov zhestkih aerodromnyh pokrytij [Microwave installation for heat treatment of expansion joints of rigid airfield coatings]. Industrial processes and technologies, 2022, vol. 2, no. 2, pp. 100-107. (In Russ.). DOI: 10.37816/2713-0789-2022-2-2(4)-100-107
Nedonoskov A.B., Vnukov A.N., Dornyak O.R., Sannikova S.M., Makogon V.K. Sposob obrabotki i vosstanovleniya rabochih svojstv shvov zhyostkih aerodromnyh i dorozhnyh pokrytij [Method of processing and restoring the working properties of seams of rigid airfield and road surfaces]. Patent Rossiiskaya Federatsiya no. 2021134425 (2022).
Grigor’ev A.D. Elektrodinamika i mikrovolnovaya tekhnika [Electrodynamics and microwave technology]. Saint Petersburg: Lan’, 2007, 704 p. (In Russ.).
Arhangel’skij Yu.S. Sverhvysokochastotnaya elektrotekhnologiya. Saratovskaya shkola elektrotekhnologov [Ultra- highfrequency electrical technology. Saratov School of Elec- trical Technologies]. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2011, vol. 4, no. 3(61), pp. 5-15. (In Russ.).
Gavrilenkov A.M., Kazarcev D.A., Emel’yanov A.B. Ocenka energoeffektivnosti konvektivnoj sushki pri dopolnitel’nom SVCH-nagreve materiala [Assessment of the energy efficiency of convective drying with additional microwave heating of the material]. Thermal processes in engineering, 2016, vol. 8, no. 10, pp. 466-471. (In Russ.).
Mihajlovskij K.V., Reznik S.V. Prognozirovanie temperaturnyh rezhimov processa otverzhdeniya svyazuyushchego pri poluchenii detalej iz polimernyh kompozicionnyh materialov s pomoshch’yu mikrovolnovogo izlucheniya [Prediction of temperature conditions of the binder curing process when producing parts from polymer composite materials using microwave radiation]. Thermal processes in engineering, 2014, vol. 6, no. 8, pp. 363-368. (In Russ.).
Lapochkin M.S., Morozov O.G. Povyshenie effektivnosti tayaniya snezhnoledyanoj massy pri kombinirovannom energeticheskom vozdejstvii mikrovolnovogo i ul’trazvukovogo polej [Increasing the efficiency of melting snowice mass with combined energy exposure to microwave and ultrasonic fields]. Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk, 2012, vol. 14, no. 1-3, pp. 894-899. (In Russ.).
Komarov V.V. Formulirovki matematicheskih modelej processov vzaimodejstviya elektromagnitnyh voln s disspativnymi sredami v SVCH-nagrevatel’nyh sistemah [Formulations of mathematical models of the processes of interaction of electromagnetic waves with dysspative media in microwave hea- ting systems]. Fizika volnovyhprocessov i radiotekhnicheskie sistemy, 2010, vol. 13, no. 4, pp. 57-63. (In Russ.).
Lakzian E., Parsian A., Lakzian K. Numerical simulation of melting ice around a floating by microwaves. International Journal Heat and Mass Transfer, 2015, vol. 52, no. 3, pp. 429–436. DOI: 10.1007/s00231-015-1567-6
Grishina E.M., Arhangel’skij Yu.S. Matematicheskoe modelirovanie termoobrabotki v kamerah luchevogo tipa SVCH elektrotermicheskih ustanovok [Mathematical modeling of heat treatment in radiation type chambers of microwave electrothermal installations]. Voprosy elektrotekhnologii, 2015, no. 1(6), pp. 5-9. (In Russ.).
Samanta S.K., Basak T., Sengupta B. Theoretical analysis on microwave heating of oil-water emulsions supported on ceramic, metallic or composite plates. International Journal of Heat and Mass Transfer, 2008, vol. 51, no. 25-26, pp. 6136–6156. DOI: https://doi.org/10.1016/j.ijheatmass-transfer.2008.04.003
Saitov R.I., Hasanova A.F., Abdeev R.G. et al. Matematicheskaya model’ processa elektromagnitnogo nagreva mnogofaznogo mnogokomponentnogo plasta tyazheloj nefti [Mathematical model of the process of electromagnetic heating of a multiphase multicomponent formation of heavy oil]. Vestnik Akademii nauk Respubliki Bashkortostan, 2018, vol. 29, no. 4(92), pp. 73-79. (In Russ.).
Rattanadecho P., Klinbun W. Theoretical Analysis of Microwave Heating of Dielectric Materials Filled in a Rectangular Waveguide with Various Resonator Distances. Journal of Heat Transfer, 2011, vol. 133, no. 3, article 031008. DOI: 10.1115/1.4002628
Grinchik N.N., Akulich P.V., Adamovich A.L. et al. Mode ling of nonisothermal heat and moisture transfer in capillary porous media in periodic microwave heating. Journal of Engineering Physics and Thermophysics, 2007, vol. 80, no. 1, pp. 1–10. URL: https://doi.org/10.1007/s10891-007-0001-4
Sajfutdinov A.A., Timerkaev A.I. Sajfutdinov Chislennoe modelirovanie poverhnostnogo bar’ernogo razryada v vozduhe [Numerical modeling of surface barrier discharge in the air]. XII Vserossijskij s’ezd po fundamental’nym problemam teoreticheskoj i prikladnoj mekhaniki: sbornik trudov. V 4 tomah (19–24 avgusta 2019 goda, Ufa) [XII All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics]. Vol. 2. Ufa: Bashkirskij gosudarstvennyj universitet, 2019, pp. 877-879. (In Russ.).
Reznik S.V., Rumyancev S.A. Matematicheskoe modelirovanie temperaturnogo sostoyaniya cilindricheskih zagotovok iz polimernyh kompozicionnyh materialov pri SVCH nagreve [Mathematical modeling of the temperature state of cylindrical billets made of polymer composite materials at microwave heating]. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana, 2014, no. 1, pp. 6-21. (In Russ.). DOI 10.7463/0114.0658448
Zaharov V.V., Yаnkin S.S., Trigorlyj S.V. Chislennoe modelirovanie processov SVCH termoobrabotki dielektrikov bol’shoj ploshchadi s primeneniem SVCH ustanovok metodicheskogo dejstviya [Numerical modeling of the processes of microwave thermal treatment of large-area dielectrics using microwave installations of methodological action]. Voprosy elektrotekhnologii, 2018, no. 3(20), pp. 36-41. (In Russ.).
Hossan M.R., Dutta P. Effects of temperature dependent properties in electromagnetic heating. International Journal of Heat and Mass Transfer, 2012, vol. 55, no. 13-14, pp. 3412–3422. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.072
Rudobashta S.P. Matematicheskoe modelirovanie processov elektromagnitnogo nagreva stroitel’nyh materialov. [Mathematical modeling of electromagnetic heating processes of building materials]. Umnye kompozity v stroitel’stve, 2021, vol. 2, no. 3, pp. 46-57. (In Russ.).
Oloumi D., Rambabu K. Microwave heating of heavy oil reservoirs: A critical analysis. Microwave and Optical Tech- nology Letters, 2016, vol. 58, no. 4, pp. 809–813. DOI: https://doi.org/10.1002/mop.29670
Baskakov S.I. Elektrodinamika i rasprostranenie radiovoln [Electrodynamics and radio wave propagation]. Moscow: Vysshaya shkola, 1992, 416 p. (In Russ.).
Vinnichenko A.A., Zajcev N.A. Prozrachnye granichnye usloviya dlya volnovogo uravneniya v kvadratnoj oblasti [Transparent boundary conditions for the wave equation in the square region]. Preprinty IPM im. M.V. Keldysha, 2009, no. 80, pp. 2-20. (In Russ.). URL: http://library.keldysh.ru/preprint.asp?id=2009-80
Introduction to COMSOL Multiphysics. URL: https://cdn.comsol.com/doc/5.4/IntroductionToCOMSOLMultiphysics.ru_RU.pdf
mai.ru — informational site of MAI Copyright © 2009-2024 by MAI |