Studying pulsations of local thermal flow density while condensation on a pipe with hydrophobic coating


Аuthors

Kuzma-Kichta Y. A.*, Lavrikov A. V., Ivanov N. S.**, Gorbachev D. V.

National Research University “Moscow Power Engineering Institute”, 14, Krasnokazarmennaya str., Moscow, 111250 Russia

*e-mail: kuzma@itf.mpei.ac.ru
**e-mail: ivanovniks@mpei.ru

Abstract

The authors studied both heat transfer and pulsations of the heat flux local density during condensation on a pipe with a hydrophobic coating. The local heat flux and its fluctuations were measured by gradient thermometry methods. The article presents data on heat transfer and flux local density fluctuations while its condensation on a pipe with a hydrophobic coating and computational results of the heat flux condensation on a pipe with hydrophobic coating within the range of heat loadings of 125–170 kW/m2, gas contents of 12–30% and pressures of 52–55 kPa. It is revealed that with the water steam condensation on the pipe with coating, amplitude pulsations of the heat flux local density and spectrum energy are being decrease with gas content increasing. Both amplitude and energy pulsations of the heat flux local density are greater for the pipe with coating than for the one without it.

Keywords:

heat transfer during condensation, gradient heat logging, sensors of heat flow local density, time thermograms, local heat flow density fluctuation spectra, hydrophobic coating

References

  1. Henderson C.L., Marchello J.M. Film Condensation in the Presence of a Noncondensable Gas. Journal of Heat Transfer, 1969, vol. 91, no. 3, pp. 447–450.

  2. Komendantov A.S., Kovalev A.S., Petukhov B.S. Eksperimental’noe issledovanie teplootdachi pri kondensatsii para chetyrekhokisi azota, chastichno proshedshego vtoruyu stadiyu dissotsiatsii [Experimental study of heat transfer during condensation of nitrogen tetraoxide vapour that has partially passed the second stage of dissociation]. Teplofizika vysokikh temperatur, 1971, vol. 9, no. 1, pp. 184–187. (In Russ.)

  3. Zainulina E.R. Gradientnaya teplometriya v issledovanii tep loobmena pri kondensatsii para na naruzhnoi poverkhnosti truby [Gradientnaya teplometriya v issledovanii teploobmena pri kondensatsii para na naruzhnoi poverkhnosti truby]. Ph. D. thesis. Saint-Petersburg: Peter the Great St. Petersburg Polytechnic University, 2019, 117 p. (In Russ.)

  4. Lee, Shao-Lin. Teilorovskaya neustoichivost’ plenki zhidkosti na dlinnom gorizontal’nom krugovom tsilindre v nepodvizhnom vozdukhe [Taylor Instability of a Liquid Film Around a Long, Horizontal, Circular Cylindrical Body in Still Air]. Prikladnaya mekhanika, 1963, vol. 30, iss. 3, pp. 140–145 (In Russ.)

  5. Shemagin I.A., Budov V.M., Sokolov V.A. O volnakh mezhfaznoi poverkhnosti pri kondensatsii para [On interfacial surface waves in vapour condensation]. Izvestiya Akademii nauk SSSR. Seriya Energetika i transport, 1983, no. 3, pp. 160–162. (In Russ.)

  6. Gogonin I.I., Dorokhov A.R. Teploobmen pri kondensatsii para freona-21 na gorizontal’nykh trubakh. Izvestiya Sibirskogo otdeleniya Akademii nauk SSSR. Seriya tekhnicheskikh nauk, 1975, vol. 3, no. 13, pp. 81–84. (In Russ.)

  7. Le Fevre, E.J. and Rose, J.W. A Theory of Heat Transfer by Dropwise Condensation. Proceedings of Third International Heat Transfer Conference. (Chicago, Illinois, August 7-12), 1966, pp. 362–375.

  8. Ohtani S., Chiba Y., Ohwaki M. Heat Transfer in Dropwise Condensation of Steam. Chemical Engineering, 1972, vol. 36(4), pp. 412–418.

  9. Tsuruta T., Tanaka H., Togashi S. Experimental verification of constriction resistance theory in dropwise condensation heat transfer. International Journal of Heat and Mass Transfer, 1991, vol. 34, no. 11, pp. 2787–2796.

  10. Mityakov V.Yu., Zainullina E.R., Sapozhnikov S.Z., Grekov M.A. Issledovanie kapel’norucheikovoi kondensatsii metodom gradientnoi teplometrii [Investigation of drop letrub condensation by gradient thermometry]. Materialy Vos’moi Rossiiskoi natsional’noi konferentsii po teploobmenu (17–22 october 2022, Moscow). In 2 vol. Vol. 1. Moscow: National Research University “Moscow Power Engineering Institute”, 2022, pp. 325–326.

  11. Gogonin I.I., Shemagin I.A., Budov V.M., Dorokhov A.R. Teploobmen pri plenochnoi kondensatsii i plenochnom kipenii v elementakh oborudovaniya AES [Heat transfer at film condensation and film boiling in NPP equipment elements]. Moskva, Energoatomizdat, 1993, 208 p.

  12. Kuzma-Kichta Y.A., Ivanov N.S., Chugunkov D.V. et al. Wetting of Hydrophobic and Hydrophilic Coatings. Journal of Engineering Physics and Thermophysics, 2021, vol. 94, no. 6, pp. 1549–1556.

  13. Sapozhnikov S.Z., Mityakov V.Yu., Mityakov A.V. Gradientnye datchiki teplovogo potoka. Saint-Petersburg: Izdatel’stvo Sankt-Peterburgskogo politekhnicheskogo universi teta Petra Velikogo, 2003, 202 p.

  14. Kuzma-Kichta Y.A., Chugunkov D.V., Lavrikov A.V., Ivanov N.S. Sposob formirovaniya kombinirovannoi supergidrofobnoi struktury poverkhnosti [Method of formation of combined superhydrophobic superfluid structure]. Patent Russian Federation no. 2769107 (2022).

  15. Kuzma-Kichta Y.A. Issledovanie teploobmena i mekhanizma kipeniya na metalicheskoi poverkhnosti bez pokrytiya i s maloteploprovodnym pokrytiem [Investigation of heat transfer and boiling mechanism on uncoated and low-heat conductive coated metal surface]. Ph. D. thesis. Mosсow: Institute for High Temperatures of the USSR Academy of Sciences, 1974, 130 p.

  16. Krasnov Yu.S., Borisoglebskaya A.P., Antipov A.V. Sistemy ventilyatsii i konditsionirovaniya. Rekomendatsii po proektirovaniyu, ispytaniyam i naladke [Ventilation and air conditioning systems. Recommendations for design, testing and commissioning]. Mosсow: Integral, 2013, 372 p.

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI