Thermal conductivity assessment of new carbon polymer composite materials


Аuthors

Popov I. A.1*, Khamidullin O. L.1**, Konstantinov D. Y.1, Popov I. A.2, Zhukova Y. V.3

1. Kazan National Research Technical University named after A.N. Tupolev, Kazan, Russia
2. Kazan State Agrarian University, K.Marx st., 65, Kazan, Republic of Tatarstan, 420015, Russia
3. A. V. Luikov Heat and Mass Transfer Institute of NAS of Belarus, 15 P. Brovka Str., Minsk, 220072, Belarus

*e-mail: popov-igor-alex@yandex.ru
**e-mail: khamidullinoskarl@mail.ru

Abstract

The study of the thermal conductivity of new carbon polymer composite materials (PCM) based on prepregs and semipregs with various fillers was conducted by the stationary heat flux method. The levels of thermal conductivity coefficients and their dependence on temperature within the temperature range from — 20°C to 80°C were established. The values of the thermal conductivity coefficients ranged from 0.141 to 0.54 W/(m K). Temperature dependences were obtained for thermal conductivity coefficients predicting of the studied PCM. The obtained results may be applied for calculation and design of the systems and installations with structural elements from carbon fiber plastics, as well as for production processes modeling.


Keywords:

thermal conductivity, polymer composite materials, carbon fiber-reinforced plastic, stationary heat flow meter

References

  1. Li H., Zhu Q., Liu G., Zhu Q. Intrinsically And Extrinsically Anisotropic Heat Transport In Bulk Materials And Nanostructures: A Review. International Journal of Heat and Mass Transfer, 2022, vol. 196, p. 123307. DOI: 10.1016/j.ijheatmasstransfer.2022.123307

  2. Guo Y., Ruan K, Shi X., Yang X. Factors Affecting Thermal Conductivities Of The Polymers And Polymer Composites: A Review. Composites Science and Technology, 2020, vol. 193, p. 108134. DOI: 10.1016/j.compscitech.2020.108134

  3. Zhou T., Zhao Y., Rao Z. Fundamental And Estimation Of Thermal Contact Resistance Between Polymer Matrix Composites: A Review. International Journal of Heat and Mass Transfer, 2022, vol. 189, p. 122701. DOI: 10.1016/j.ijheatmasstransfer.2022.122701

  4. Tian W., Qi L., Fu M. W. Multi-Scale And Multi-Step Modeling Of Thermal Conductivities Of 3D Braided Composites. International Journal of Mechanical Sciences, 2022, vol. 228, p. 107466. DOI: 10.1016/j.ijmecsci.2022.07466

  5. Zhai S., Zhang P., Xian Y., Zeng J. Effective Thermal Conductivity Of Polymer Composites: Theoretical Models And Simulation Models. International Journal of Heat and Mass Transfer, 2018, vol. 117, pp. 358-374. DOI: 10.1016/j.ijheatmasstransfer.2017.09.067

  6. Yang M., Li X., Yuan J., Wen Z., Kang G. A Comprehensive Study On The Effective Thermal Conductivity Of Random Hybrid Polymer Composites. International Journal of Heat and Mass Transfer, 2022, vol. 182, p. 121936. DOI: 10.1016/j.ijheatmasstransfer.2021.121936

  7. Popov I.A., Konstantinov D.Yu., Kuzin A.A., Russkikh M.D. Studying thermo-physical properties of polymer carbon composite materials. Thermal processes in engineering, 2022, vol. 14, no. 3, pp. 116–125. (In Russ.). DOI: 10.34759/tpt-2022-14-3-116-125

  8. ASTM C518-21. Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus. Annual Book of ASTM Standards, 2021. 16 p. DOI: 10.1520/C0518-21

  9. Khamidullin O.L., Nizamiev R.R., Balkaev D.A., Amirova L.M. Determination of thermal conductivity of polymers by the method of differential scanning calorimetry with temperature modulation. Thermal processes in engineering, 2022, vol. 14, no. 4, pp. 186–192. (In Russ.) DOI: 10.34759/ tpt-2022-14-4-186-192

  10. ASTM E1952-23. Standard Test Method for Thermal Conductivity and Thermal Diffusivity by Modulated Temperature Differential Scanning Calorimetry. Annual Book of ASTM Standards. 2023, 7 p. DOI: 10.1520/E1952-23

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI