Numerical study of the spacecraft glass elements resistance in interaction with high velocity particles


Аuthors

Dobritsa D. B.*, Yashchenko B. Y.

Lavochkin Research and Production Association, NPO Lavochkin, 24, Leningradskay str., Khimki, Moscow region, 141400, Russia

*e-mail: DobritsaDB@laspace.ru

Abstract

The article deals with the study of high velocity collisions of the spacecraft glass elements. With numerical simulation technique based on application of the Wilkins grid Lagrangian method, the problems of single and group collisions of balls from various materials simulating space debris particles or micrometeoroids with glass plates and a model of the spacecraft solar cell were solved. Validation of the applied numerical methods and algorithms was performed by comparison with experimental data, as well as with ballistic equations characterizing the penetration depth of a high velocity particle into a semi-infinite glass target.

Keywords:

high velocity collision, space debris, stress-strain state, solar cell, numerical simulation

References

  1. Vedder J.F., Mandeville J.-C. Microcraters Formed in Glass by Projectiles of Various Densities. Journal of Geophysical Research, 1974, vol. 79, iss. 23, pp. 3247-3256. DOI: 10.1029/JB079i023p03247

  2. Smirnov V.M., Semenov A.S., Sokolov V.G., Konoshenko V.P., Kovalyov I.I. Study of Micrometeoroid and Orbital Debris Effects on the Solar Panels Retrieved from the Space Station “MIR”. Space Debris, 2000, vol. 2, iss. 1, pp. 1–7. DOI: 10.1023/A1015607813420

  3. Mandeville J.-C., Perrin, J.-M., Vidal L. Experimental hypervelocity impacts: Implication for the analysis of material retrieved after exposure to space environment. Acta Astronautica, 2020, vol. 167, pp. 429–439. DOI: 10.1016/j.actaastro.2019.11.020

  4. Alwes D. Columbus-viewport glass pane hyper velocity impact testing and analysis. International Journal of Impact Engineering, 1990, vol. 10, iss. 1-4, pp. 1-22. DOI: 10.1016/ 0734-743X(90)90045-W

  5. Taylor E.A., Tsembelis K., Hayhurst C.J., Kay L., Burchell M.J. Hydrocode modelling of hypervelocity impact on brittle materials: Depth of penetration and conchoidal diameter. International Journal of Impact Engineering, 1999, vol. 23, no. 1, part II, pp. 895–904.

  6. Gerasimov A.V., Pashkov S.V., Khristenko Yu.F., Cherepanov R.O. Setochnoe i bessetochnoe modelirovanie udara gruppy chastits kosmicheskogo musora po steklu [Grid and meshless modeling of the impact of a group of space debris particles on glass]. Omskii nauchnyi vestnik, 2015, no. 3 (143), pp. 316–319. (In Russ.)

  7. Dobritsa D.B., Yashchenko B.Yu. Chislennoe modelirovanie protsessa vzaimodeistviya vysokoskorostnogo udarnika s pregradoi s ispol'zovaniem trekhmernoi tetraehdral'noi raznostnoi setki [Numerical simulation of the interaction of a hypervelocity impactor with an obstacle using a three-dimensional tetrahedral difference grid]. X Vserossiiskaya nauchnaya konferentsiya “Fundamental’nye i prikladnye problemy sovremennoi mekhaniki (FPPSM-2018)” (3-5 sentyabrya 2018, Tomsk): sbornik trudov. Tomsk, Tomskii gosudarstvennyi universitet, 2018, pp. 94–96. (In Russ.)

  8. Vysokoskorostnoi udar. Modelirovanie i ehksperiment [Hypervelocity impact. Simulation and experiment]. Ed. by A.V. Gerasimov. Tomsk: Izdatel’stvo nauchno-tekhnicheskoi literatury, 2016, 568 p. (In Russ.)

  9. Wilkins M.L. Computer simulation of dynamic fenomena. Berlin – Heidelberg – New-York. Springer, 1999, 246 p.

  10. Galanin M.P., Shcheglov I.A. Razrabotka i realizatsiya algoritmov trekhmernoi triangulyatsii slozhnykh prostranstvennykh oblastei: pryamye metody [Development and implementation of algorithms for three-dimensional triangulation of complex spatial areas: direct methods]. Moskva, 2006, 32 p. (Preprinty Institutа prikladnoi matematiki im. M.V. Keldysha RAN, no. 10) (In Russ.)

  11. Fomin V.M., Gulidov A.I., Sapozhnikov G.A., Shabalin I.I., Babakov V.A. et al. Vysokoskorostnoe vzaimodeistvie tel [High-speed interaction of bodies]. Novosibirsk: Izdatel’stvo Sibirskogo otdeleniya Rossiiskoi akademii nauk, 1999, 600 p. (In Russ.)

  12. Johnson G.R., Colby D.D., Vavrick D.J. Tree-dimensional computer code for dynamic response of solids to intense impulsive loads. International Journal Numerical Methods Engineering, 1979, vol. 14, no. 12, pp. 1865-1871.

  13. Johnson G.R., Holmquist T.J. An improved computational constitutive model for brittle materials. AIP Conference Proceedings, 1994, vol. 309, iss. 1, pp. 981–984. DOI: 10.1063/1.46199

  14. Egorova M.S., Parshikov A.N. Chislennoe modelirovanie razrusheniya khrupkikh materialov metodom SPH [Numerical simulation of fracture of brittle materials by the SPH method]. Fiziko-khimicheskaya kinetika v gazovoi dinamike, 2015, vol. 16, iss. 4, pp. 1-8. (In Russ.)

  15. Ryan Conor. Momentum Transfer due to Hypervelocity Impacts into Spacecraft Solar Arrays. Delft University of Technology, Faculty of Aerospace Engineering. Delft, 2022, 114 p. URL: https://hanspeterschaub.info/Papers/grads/ConorRyan.pdf

  16. Gault D.E. Displaced mass, depth, diameter and effects of oblique trajectories for impact craters formed in dense crystalline rocks. The Moon, 1973, vol. 6, pp. 32–44. DOI: 10.1007/BF02630651

  17. Yu Shanbing, Sun Gengchen, Tan Qingming. Experimental laws of cratering for hypervelocity impacts of spherical projectiles into thick target. International Journal of Impact Engineering, 1994, vol. 15, iss. 1, pp. 67–77. DOI: 10.1016/ S0734-743X(05)80007-7

  18. Savinykh A.S., Garkushin G.V., Razorenov S.V., Kanel’ G.I. Prodol’naya i ob’emnaya szhimaemost’ natrievo-izvestkovogo stekla pri davleniyakh do 10 GPa [Longi tudinal and volumetric compressibility of sodium-lime glass at pressures up to 10 GPa]. Zhurnal tekhnicheskoi fiziki, 2007, vol. 77, iss. 3, pp. 38–42. (In Russ.)

  19. Vorontsova E.O., Luk’yanenko M.V., Kryuchkov P.A. Otsenka tselostnosti fotopreobrazovatelei solnechnykh batarei, primenyaemykh na perspektivnykh kosmicheskikh apparatakh [Assessing the integrity of solar cell photoconverters used on advanced spacecraft]. Sibirskii zhurnal nauki i tekhnologii, 2018, vol. 19, no. 4, pp. 624–630. (In Russ.). DOI: 10.31772/2587-6066-2018-19-4-624-630

mai.ru — informational site of MAI

Copyright © 2009-2024 by MAI